
CPSC-320 Intermediate Algorithm Design and Analysis Winter 2000

Homework # 3

Due in class on Wednesday, October 25.

Reminder: while you are encouraged to work with others on the homework problems, you MUST
write up your solutions on your own.

In this homework, you need to describe both algorithms and explanations of why they are
correct. Describe your algorithms clearly, using either full sentences in English, pseudocode, or
a combination. When explaining correctness, you should use full sentences - either English or
mathematical notation or both is fine. Answers do not have to be long, but should be clear
and nicely presented. A part of the mark for the problems will be based on the quality of the
presentation.

1. An undirected graph G = (V,E) is bipartite if V can be partitioned into two sets V1 and V2

so that every edge in E joins a vertex of V1 to a vertex of V2. (Thus there is no edge between
any pair of vertices in V1 or between any pair of vertices in V2).

a) Give an example of a bipartite graph and an example of a graph that is not bipartite.

b) Describe a linear time algorithm to test if a graph is bipartite.

c) Give a short and clear explanation of why your algorithm is correct.

2. Let A and B be two sets, each with n elements from some ordered set, such that A resides
in computer P and B in Q. P and Q can communicate by sending messages, and they can
perform any kind of local computation.

a) Design an algorithm to find the nth smallest element of the union of A and B. You can
assume that all the elements are distinct. Your goal is to minimize the number of messages,
where a message can contain one element or one integer. (Note that computations such as
sorting of the elements in A on computer P or the elements of B on computer Q do not add
to the message count.)

b) What is the number of messages sent in the worst case? Explain your answer.

3. Consider the following algorithm for the single source shortest paths problem when the graph
may have negative weights (but you can assume that the graph has no negative cycles). The
algorithm simply finds the smallest edge weight, say −w, adds w to every edge weight, and
then uses Dijkstra’s algorithm for solving the shortest path problem on the modified graph.
The output is the shortest path tree output by Dijkstra’s algorithm, (with the edge weights
as in the original input).

Do you think this algorithm correctly computes the shortest path tree? Why or why not?

4. An arborescence of a directed graph is a rooted tree such that there is a directed path from
the root to every other vertex in the graph.

a) Give a polynomial time algorithm to test whether G contains an arborescence.

b) Give a bound on the running time of your algorithm, using O-notation. Explain your
answer.


