CPSC-320 Intermediate Algorithm Design and Analysis Winter 2000

Homework # 2
Due in class on Friday, September 29.

1. Binary search is an efficient way to search a sorted array for a given key K. Here is a version
of binary search that can be carried out in parallel with p processors.

First, divide the sorted array into p + 1 segments of approximately equal size, so that there
are p keys at the internal boundaries of the segments. Each processor ¢,1 < i < p compares
the given key K to the ith internal boundary key and writes, in a variable, ¢;, a 0 if K is
greater and a 1 if K is smaller than the boundary key (in case of equality, the search ends).
All processors do this in parallel.

Then, in parallel, each processor 7 checks to see if ¢; = 0 and ¢;+; = 1. We assume that ¢g = 0
and cp41 = 1, so for exactly one value 7,0 < j < p, both ¢; = 0 and ¢;11 = 1. Note that the
key K will be in the jth segment, if the key happens to be in the array.
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If 5 > 1 then the jth processor broadcasts “;j” to the other processors, and if no broadcast
is done, all processors determine that 5 = 0. Once all processors have j, the search then
continues recursively within the jth segment, again with the p processors working in parallel.

When the segment is of size p or less, each processor compares one element and the search
ends.

Give a recurrence relation for the parallel number of key comparisons, say P(n), done by this
algorithm in the worst case. (P(n) can also be viewed as the number of comparisons done by
a single processor during the algorithm.) Use the iteration method to solve your recurrence,
so that you get an expression for P(n) as a function of both n and p. You should find an
exact solution for your recurrence rather than expressing your result using big-O notation.

2. An arithmetic operation that we will see later this semester is that of exponentiation. Given
three (binary) non-negative numbers z, e, and N, the exponentiation problem is to compute
z¢ mod N. For example, if z = 3,e = 4, and N = 15 then z¢ = 3* = 81 and 81 mod 15 = 6,
so the answer in this case is 6.

The following equations explain what is z¢ mod N in terms of either z¢/2 or z(¢=1/2  for
e > 1, depending on whether e is even or odd:

. (2¢/? mod N)? mod N, if e is even
A mOd N = (e—l)/2 2 . .
(z mod N)“z mod N, if e is odd.
(a) Using the above “inductive” definition of z¢ mod N, describe a recursive algorithm that
computes z¢ mod N. (You can assume that multiplication and mod operations on n-bit
numbers are available, and that you can use the usual programming constructs such as “if”
statements, testing if a number is even, and so on.)

(b) Give recurrence relations that describe (i) the number of multiplications and (ii) the
number of mod operations done by your algorithm, and solve these recurrences.



(c) Using the fact that the running time for each multiplication and mod operation on num-
bers with at most n bits is O(n?) (where running time is measured, say, in terms of “bit
operations”), give a bound on the running time of the exponentiation algorithm.

(d) A simpler algorithm for exponentiation is as follows. Let result be a variable initialized
to 1. Repeat e times: result < result x x mod N, and finally output result. What is the
worst-case running time of this algorithm if the inputs are n-bit numbers? (Again, you can
assume that multiplication and mod operations take O(n?) time on n-bit numbers.) Which
algorithm do you think is faster on large inputs?

. In the case of algorithms that take more than one input, recurrence relations sometimes have
two parameters. Consider an algorithm that takes two inputs of sizes m and n, say with
m < n, with a recurrence for the running time given by

T(m,n) =T(m,n—1)+1; T(m,0)=T(0,n) =0.

For example,

T(3,4) = T(3,3) +
= T(3,2)+1+1
= T(2,2) + 1+ 1+ 1 because it is always the larger input that reduces in size
= T2,1)+1+14+1+1
= T(L,1)4+14+1+1+1+1
= T(1,0)+1+1+1+14+1+1
= 6.

Solve this recurrence to get a bound on the total running time of the algorithm, as a function
of m and n.

. Suppose a country’s currency consists of n coins, worth cy, ..., ¢, units. You want to compute
the minimum number of coins necessary to make change for an amount L. Assume that there
is an unlimited supply of each coin. You can also assume that c; is 1 unit, so it always possible
to make change.

(a) Let P(L) denote the minimum number of coins needed to make change for amount L.
Find a recurrence relation for P(L).

(b) Use your recurrence to design an O(nL) time algorithm for this problem.



