CPSC-320 Intermediate Algorithm Design and Analysis Winter 2000

Solutions to Homework # 1

1. Assume all numbers are positive and have no fractions.
Let z = zpzp—1-..71 and y = YpYn—1 - - - y1 be two n-digit numbers.

To multiply z and y, form n new numbers as follows. The first new number is  multiplied by
y1. The next new number is  multiplied by y2, with an additional 0 inserted as the rightmost
digit (i.e. the second new number is z X y2 X 10). The ith new number is z multiplied by y;
with ¢ — 1 additional 0’s inserted as the rightmost digits. Now, write these new numbers with
the rightmost digits aligned, so that the digits of the new numbers are arranged in columns.
Repeatedly add all digits in each column plus the carry from the previous column (if any).
The carry from the last column becomes the most significant digit(s) of the product.

Let add(n) be the number of elementary additions needed to add two n-bit binary numbers
in the worst case. Then add(n) = 2(n —1)+1 = 2n —1 = O(n) in the worst case because
we have 2 elementary additions for each pair of digits, except the first one (right most bit
addition) where there is one elementary addition. Hence, add(n) is linear in n.

Let mult(n) be the number of elementary additions needed to multiply two n-bit binary
numbers in the worst case. In what follows, we count elementary additions in which 0 is
added to something else. With the above algorithm, the worst case occurs when both numbers
are consist of n bits of value 1. In this case, the number of bits in the new numbers is
n,n+ 1,n 4+ 2,...2n. Hence, if the columns of new numbers are ordered from 1 (rightmost)
to 2n — 1 (leftmost), we have the following: n elementary additions are done to add the bits
in columns 1 and 2 (note that there is no carry from column 1 to column 2), n+ 1 elementary
additions are done to add the carry plus the bits in columns ¢,3 < % < n, and the number of
elementary additions done in the remaining columns is n+ (n — 1) +... + 2 (because there is
one fewer digit in each successive column). Hence, the total number of elementary additions
is

n

2n+ (n—2)(n+1)+ > i=(3/2)(n*+n) - 3.

=2
Hence, the (worst-case) number of elementary additions needed to multiply two n-bit binary
numbers in this way is quadratic in n.

Comment: Consider the following multiplication algorithm, which is conceptually simpler
than the one above: To multiply two numbers, say p and ¢, use a variable called sum and
initialize it to p. Then, simply iterate ¢ — 1 times: sum < sum + p and return sum as the
result. Let f(n) be the (worst case) number of elementary additions done by this algorithm.
Then f(n) = (2n —1)(g — 1) = (2n — 1)(2" — 2) = O(n2"). Note that in the worst case, g is
replaced by 2" — 1 since ¢ is an n-bit binary number and the maximum possible decimal value
of n-bit binary numbers is 2" — 1. This is an exponential time algorithm, which explains why
it is not the preferred method!

2. Claim: The total number of subsquares in an n x n grid is Y_5_; k2, for all n > 1.

Proof: by induction.



Basis: Let n = 1. It is easy to see that a 1 x 1 grid has one subsquare, namely itself. Also,
E}lc:1 k? =1, and so the claim is true for n = 1.

Induction Hypothesis: Suppose that for some given n, the total number of subsquares in
an n x n grid is Y p_; k2.

Induction Step: We show that the claim is true for an (n+1) x (n+ 1) grid. We can think
of the total subsquares in such a grid as being the sum of two parts. The first part consists of

all subsquares in the n x n grid forming the top left n x n subgrid of our (n+1) x (n+1) grid
(see the picture). By the induction hypothesis, the number of subsquares in the first part is

E}:ZI k2'

The second part consists of all subsquares that include a point from the rightmost (i.e. (n +
1)st) column or bottom (i.e. (n 4 1)st) row of the grid. If we count all subsquares in the
second part, we see that there are (2(n + 1) — 1) 1 x 1 subsquares, (2(n +1—1) —1) 2 x 2
subsquares, and more generally there are (2(n+1—k+1)—1) k x k subsquares, 1 < k < n+1.
Hence the total number of subsquares in the second part is

%(2(n+1—k+1)—1) =2n(n+1)— (n+1)(n+2)+3(n+1) = (n+1)(2n—n—2+3) = (n+1)%
k=1

Hence, the total number of subsquares is
n+1

n
SN+ (n+1)? =) K,
k=1 k=1

and the induction step is completed.

. Note that if A runs in time f(n) and B runs in time g(n), then A is faster than B on an input
of size n if and only if f(n) < g(n).

(i)

(a,b) No. for example, let f(n) = n,g(n) = nlogesn. When n = 1, f(n) > g(n) but when
n > 2, f(n) < g(n).

The answer to (a) and (b) is “No” for relationships (ii) — (v), using the same example.

(c) Yes.



(i) states that f(n)logan = O(g(n)). So there exist some constants ¢ and ng, such that for
all n > ng
f(n)logen < cg(n) = f(n) < (c/loggyn)g(n) for all n > ny.

Let ny = 2¢. Then log, n1 = c and so if n > ny,
logon > c = c/logan < 1= (c/logyn)g(n) < g(n) = for all n > max{ng,n1}, f(n) < g(n).

Hence, A is faster than B.

(d)No. Since (c) is correct, (d) must be wrong.

(ii)

(c)Yes: g(n) f(n)logon = g(n) = Q(f(n)logyn) = for all n greater than some ¢, f(n) <
g(n).

(d)No.

(iii)

(c)Yes: g(n) = O(f(n)logy n) = g(n) = Q(f(n)logy n)

= for all n greater than some ¢, f(n) < g(n).

(d)No.

(iv)

(c)No. For example, suppose f(n) = g(n) = n. Then g(n) = O(f(n)logyn) but A is not
faster than B for any n.

(d)No. Same counter example used in (c)

v)

(
(c,d)No; the same example used in (iv, ¢) works here too.
(a) Let
n
S = Zxk =l4+z+z>+...+2"
k=0
n

:>S::v-z:1:k:x+w2+x3+...+x”+1
k=0

= (1-z)8=1-—g"""

because z # 1 therefore:

xn+1
S =
rz—1
We can also use induction to prove this:
Base case: when n =10 ]
L= 121

z—1



Assume the equation is true for n:

prove for n+1:

Therefore,

— .'I,'"+1 +

n
= "4+ Y P
k=0

zntl 1
z—1

z—1
xn—|—2 _ mn—i—l + mn—i—l -1

z—1
B |
N r—1
n n—|—1_1
R S
P r—1

b)Derive a closed form expression for the sum

Suggestion: what do you get when you take the derivative with respect to z of the equation
in part (a) of this problem?

n
Z ki*. z #1
k=1

Verify that your expression is correct for z = 1/2 and n = 4, 5.

sol:

from part(a), we know

differentiate both sides

Z" k-1 _ (
kx =
k=1

z—1)[(n+1)z"] — (z"t! - 1) -1

(z —1)?



kgl (x —1)2
n k.’L‘k — (n + 1)$n+2 _ (,n + 1).’L'n+1 _ $n+2 g
kzz:l (.’L‘ — ]_)2

therefore,

ik . a2 (n+ Dzl g
€T _=
w1

Check for z = %, n=4

1 1 1 1 13
left=1--+4+2.= a4 =22
ef SRR T T
e AWPESOP L g ) 10 a0 1810413
g -1y ! 64 64 64 64 8
therefore left = right

Check for z = %,n =5

13 1 57

507 —6(3)8 + 1 5 6 11 20 48 256 228 57
oht = 242 2 2 _ 5 6 11 20 48 256 228 o7
" (—1)2 fracrs ~6a 24T 18 128 18 128 32

therefore left = right



