CPSC-320 Intermediate Algorithm Design and Analysis Winter 2000

1.

(a)

Sample Midterm Exam I Solutions

Rank the following functions by order of growth; that is, find an arrangement g1, ..., g7
of the functions satisfying g1(n) = o(g2(n)), g2(n) = o(gs(n)), and so on. Partition your
list into equivalence classes such that f(n) and g(n) are in the same class if and only if
f(n) =0O(g(n)). (If you wish, you can assume all logs are to the base 2.)

n

n®—10n, 895", n" (3/2)", Y ilogi, Y (3i—2).
=1 i=1

Solution: We assume that logs are to the base 2. The order, starting from the slowest-
growing function, is:

n

> (Bi—2), dilogi, n®—10n, 8°&"  (3/2)", ™
=1 =1

Note: the function 8!°%2" equals n3. Therefore, the functions n3 — 10n = ©(8'°&").

State whether the following statement is true or false and give a brief explanation of
your answer. Let f(n) and g(n) be non-negative functions defined over the non-negative
integers. If f(n) = o(g(n)) then it must be the case that g(n) # O(f(n)).

Solution: True. Intuitively, if f(n) = o(g(n)) then f(n) grows more slowly than g(n).
Therefore, g(n) grows faster than f(n) and so it cannot be the case that g(n) is bounded
by a constant times f(n).

More precisely, since f(n) = o(g(n)) it must be the case that lim, . f(n)/g(n) = 0.
Therefore for all constants ¢, there must be an integer N such that

f(n)/g(n) <1/c for all n > N.
Therefore, for all constants ¢, there is an integer N such that
g(n) > cf(n) for all n > N.

Therefore, it cannot be the case that g(n) = O(f(n)) and so it must be the case that
g9(n) # O(f(n)).

2. Suppose S is a nonempty subset of the numbers in the range [1,...,n|. We say that S is

(a)

independent if and only if no pair of numbers in the subset are consecutive in the usual
ordering. For example, if n = 5 then the subsets {1, 3,5}, {2,5}, and {4} are all independent
sets.

For the case n = 5, list all the possible independent subsets. (There are 12 of them.)

Solution: These are: {1}, {2}, {3}, {4}, {5}, {1,3}, {1,4}, {1,5}, {2,4}, {2,5}, {3,5},
{1,3,5}.



(b) Let I(n) be the number of independent subsets of numbers in the range [1,...,n]. nodes.
Give a recurrence relation for I(n).

(Suggestion: consider separately the independent sets containing the number n and those
that don’t contain the number n.)

Solution: The recurrence is
In)=In—1)+In—2)+1,n>2; I(1)=1,1(0) =0.

To see why the form for the general recurrence is true, note that any set which is an

independent subset of [1,2,...,n—1] is also an independent subset of [1,2,...,n|. There
are I(n—1) insependent subsets of [1,2,...,n—1]. The remaining independent subsets of
[1,2,...,n] must contain n. Any subset which is an independent subset of [1,2, ..., n—1],

with n added in, is such a set. There are I(n — 2) such subsets. The only other possible
subset containing n is the set consisting of just n, i.e. the set {n}. This account for the
“+1” in the recurrence.

(c) Explain whether you think I(n) is polynomial in n or exponential in n. (You don’t need
to solve the recurrence exactly to figure this out.)

Solution: From the recurrence, we can see that for n > 2, I(n) > 2I(n—2)+1. We can
solve this using the iteration method to see that I(n) is lower bounded by an exponential
function in n. For simplicity, assume that n is even.

I(n) > 1+4+2I(n-2)
> 1+2+44I(n—4)
> 142+4+8I(n—6)
>
> 14244420+ 27 (n — 2).

Let i =n/2 — 1 in the last line above. Then we have that

I(n) > 142+4+...2027 1 4 on/2[(9)
= 1424442021 L on/2H1
> /2,

The function 2*/2 is considered exponential in n since it is a constant (namely 2/2) to
the power n.

3. A lucky number is any positive integer that passes through the following sieve: begin by
removing every second number, then every third number from the remaining set; then remove



every fourth number from the set left by the first two passes; and so forth. The first few lucky
numbers are 1,3,7,13,19....

To find all lucky numbers smaller than n, we can use one of two algorithms. The first
algorithm is a direct implementation of the definition: it uses a Boolean array of length n and
makes repeated passes over the array, removing numbers until it completes a pass without
removing any number. The second algorithm maintains a linked list of numbers still thought
to be lucky and, at each pass, shrinks the list as needed, terminating when it completes a
pass in which no number is removed.

Analyze the worst-case behavior of these two algorithms as a function of n.

Solution: The first algorithm takes time ©(n) per pass, since on each pass the whole array
must be scanned. How many passes are there? After the first round, about n/2 numbers
remain. In the second round, about a third of remaining numbers are removed and 2/3
remain. So the number remaining is n/222/3 = n/3. After the third round, n/4 are left, and
so on. And so on, so that at the start of the ith round, n/i numbers remain.

No number is removed when i > n/i. The smallest ¢ satisfying this inequality is just greater
than y/n. So, the number of rounds is about /n.

The total number of steps of the algorithm is therefore ©(n3/2.

In the second algorithm, the linked list shrinks as numbers are removed. At the ith round,
the size of the linked list is about n/i and so the number of steps is ©(n/i). Adding up the
costs of each phase, the total cost is

n+n/2+n/3+...+n/vyn=n(1+1/2+1/3+...1//n).

The sum 1+1/2+41/3+...1/4/n is the harmonic sum and thus has value O(log v/n) = ©(logn).
Therefore, the total running time is ©(nlogn).



