
CPSC-320 Intermediate Algorithm Design and Analysis Winter 2000

Sample Midterm Exam I Solutions

1. (a) Rank the following functions by order of growth; that is, find an arrangement g1, . . . , g7

of the functions satisfying g1(n) = o(g2(n)), g2(n) = o(g3(n)), and so on. Partition your
list into equivalence classes such that f(n) and g(n) are in the same class if and only if
f(n) = Θ(g(n)). (If you wish, you can assume all logs are to the base 2.)

n3 − 10n, 8log n, nn, (3/2)n,
n∑

i=1

i log i,
n∑

i=1

(3i − 2).

Solution: We assume that logs are to the base 2. The order, starting from the slowest-
growing function, is:

n∑

i=1

(3i − 2),
n∑

i=1

i log i, n3 − 10n, 8log n, (3/2)n, nn.

Note: the function 8log
2

n equals n3. Therefore, the functions n3 − 10n = Θ(8log n).

(b) State whether the following statement is true or false and give a brief explanation of
your answer. Let f(n) and g(n) be non-negative functions defined over the non-negative
integers. If f(n) = o(g(n)) then it must be the case that g(n) 6= O(f(n)).

Solution: True. Intuitively, if f(n) = o(g(n)) then f(n) grows more slowly than g(n).
Therefore, g(n) grows faster than f(n) and so it cannot be the case that g(n) is bounded
by a constant times f(n).

More precisely, since f(n) = o(g(n)) it must be the case that limn→∞ f(n)/g(n) = 0.
Therefore for all constants c, there must be an integer N such that

f(n)/g(n) ≤ 1/c for all n ≥ N.

Therefore, for all constants c, there is an integer N such that

g(n) ≥ cf(n) for all n ≥ N.

Therefore, it cannot be the case that g(n) = O(f(n)) and so it must be the case that
g(n) 6= O(f(n)).

2. Suppose S is a nonempty subset of the numbers in the range [1, . . . , n]. We say that S is
independent if and only if no pair of numbers in the subset are consecutive in the usual
ordering. For example, if n = 5 then the subsets {1, 3, 5}, {2, 5}, and {4} are all independent
sets.

(a) For the case n = 5, list all the possible independent subsets. (There are 12 of them.)

Solution: These are: {1}, {2}, {3}, {4}, {5}, {1, 3}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 5},
{1, 3, 5}.



(b) Let I(n) be the number of independent subsets of numbers in the range [1, . . . , n]. nodes.
Give a recurrence relation for I(n).

(Suggestion: consider separately the independent sets containing the number n and those
that don’t contain the number n.)

Solution: The recurrence is

I(n) = I(n − 1) + I(n − 2) + 1, n > 2; I(1) = 1, I(0) = 0.

To see why the form for the general recurrence is true, note that any set which is an
independent subset of [1, 2, . . . , n−1] is also an independent subset of [1, 2, . . . , n]. There
are I(n−1) insependent subsets of [1, 2, . . . , n−1]. The remaining independent subsets of
[1, 2, . . . , n] must contain n. Any subset which is an independent subset of [1, 2, . . . , n−1],
with n added in, is such a set. There are I(n− 2) such subsets. The only other possible
subset containing n is the set consisting of just n, i.e. the set {n}. This account for the
“+1” in the recurrence.

(c) Explain whether you think I(n) is polynomial in n or exponential in n. (You don’t need
to solve the recurrence exactly to figure this out.)

Solution: From the recurrence, we can see that for n > 2, I(n) ≥ 2I(n−2)+1. We can
solve this using the iteration method to see that I(n) is lower bounded by an exponential
function in n. For simplicity, assume that n is even.

I(n) ≥ 1 + 2I(n − 2)

≥ 1 + 2 + 4I(n − 4)

≥ 1 + 2 + 4 + 8I(n − 6)

≥ . . .

≥ 1 + 2 + 4 + . . . 2i + 2i+1I(n − 2i).

Let i = n/2 − 1 in the last line above. Then we have that

I(n) ≥ 1 + 2 + 4 + . . . 2n/2−1 + 2n/2I(2)

= 1 + 2 + 4 + . . . 2n/2−1 + 2n/2+1

≥ 2n/2.

The function 2n/2 is considered exponential in n since it is a constant (namely 21/2) to
the power n.

3. A lucky number is any positive integer that passes through the following sieve: begin by
removing every second number, then every third number from the remaining set; then remove



every fourth number from the set left by the first two passes; and so forth. The first few lucky
numbers are 1, 3, 7, 13, 19....

To find all lucky numbers smaller than n, we can use one of two algorithms. The first
algorithm is a direct implementation of the definition: it uses a Boolean array of length n and
makes repeated passes over the array, removing numbers until it completes a pass without
removing any number. The second algorithm maintains a linked list of numbers still thought
to be lucky and, at each pass, shrinks the list as needed, terminating when it completes a
pass in which no number is removed.

Analyze the worst-case behavior of these two algorithms as a function of n.

Solution: The first algorithm takes time Θ(n) per pass, since on each pass the whole array
must be scanned. How many passes are there? After the first round, about n/2 numbers
remain. In the second round, about a third of remaining numbers are removed and 2/3
remain. So the number remaining is n/2x2/3 = n/3. After the third round, n/4 are left, and
so on. And so on, so that at the start of the ith round, n/i numbers remain.

No number is removed when i > n/i. The smallest i satisfying this inequality is just greater
than

√
n. So, the number of rounds is about

√
n.

The total number of steps of the algorithm is therefore Θ(n3/2.

In the second algorithm, the linked list shrinks as numbers are removed. At the ith round,
the size of the linked list is about n/i and so the number of steps is Θ(n/i). Adding up the
costs of each phase, the total cost is

n + n/2 + n/3 + . . . + n/
√

n = n(1 + 1/2 + 1/3 + . . . 1/
√

n).

The sum 1+1/2+1/3+. . . 1/
√

n is the harmonic sum and thus has value Θ(log
√

n) = Θ(log n).
Therefore, the total running time is Θ(n log n).


