
CPSC-320 Intermediate Algorithm Design and Analysis Winter 2000

Sample Midterm I Exam

You should try all three questions on the exam. Make sure you give yourself time for each part
and remember that you will get partial credit if your work is on the right track.

You may refer to your lecture notes and the text during the exam. All material up to and
including the lower bounds lecture is required for the exam. In the actual midterm, I will space
the problems so that you can write the solutions in the midterm handout.

1. (a) Rank the following functions by order of growth; that is, find an arrangement g1, . . . , g7

of the functions satisfying g1(n) = o(g2(n)), g2(n) = o(g3(n)), and so on. Partition your
list into equivalence classes such that f(n) and g(n) are in the same class if and only if
f(n) = Θ(g(n)). (If you wish, you can assume all logs are to the base 2.)

n3 − 10n, 8log n, nn, (3/2)n,
n∑

i=1

i log i,
n∑

i=1

(3i − 2).

(b) State whether the following statement is true or false and give a brief explanation of
your answer. Let f(n) and g(n) be non-negative functions defined over the non-negative
integers. If f(n) = o(g(n)) then it must be the case that g(n) 6= O(f(n)).

2. Suppose S is a nonempty subset of the numbers in the range [1, . . . , n]. We say that S is
independent if and only if no pair of numbers in the subset are consecutive in the usual
ordering. For example, if n = 5 then the subsets {1, 3, 5}, {2, 5}, and {4} are all independent
sets.

(a) For the case n = 5, list all the possible independent subsets. (There are 12 of them.)

(b) Let I(n) be the number of independent subsets of numbers in the range [1, . . . , n]. nodes.
Give a recurrence relation for I(n).

(Suggestion: consider separately the independent sets containing the number n and those
that don’t contain the number n.)

(c) Explain whether you think I(n) is polynomial in n or exponential in n. (You don’t need
to solve the recurrence exactly to figure this out.)

3. A lucky number is any positive integer that passes through the following sieve: begin by
removing every second number, then every third number from the remaining set; then remove
every fourth number from the set left by the first two passes; and so forth. The first few lucky
numbers are 1, 3, 7, 13, 19....

To find all lucky numbers smaller than n, we can use one of two algorithms. The first
algorithm is a direct implementation of the definition: it uses a Boolean array of length n and
makes repeated passes over the array, removing numbers until it completes a pass without
removing any number. The second algorithm maintains a linked list of numbers still thought
to be lucky and, at each pass, shrinks the list as needed, terminating when it completes a
pass in which no number is removed.

Analyze the worst-case behavior of these two algorithms as a function of n.


