
CPSC-320: Intermediate Algorithm Design and Analysis 128

Dijkstra’s Algorithm

Dijkstra’s algorithm is a natural, greedy approach towards

solving the shortest path problem. The shortest path tree

is built up, edge by edge. Given a partially constructed tree

(initially just the source), let u be the node not currently

in the tree such that u can be connected to the tree via an

edge (u, v) and the path from source to u (via v) is cheaper

than any other path that could be formed by extending the

tree by one edge. Then, u is added to the tree.

The inputs to the algorithm are the initial vertex, a, the final

vertex, z, the weight of edge (i, j), w(i, j) > 0, and the label

of vertex x, L(x). At termination, L(z) is the length of the

shortest path from a to z.

CPSC-320: Intermediate Algorithm Design and Analysis 129

1 dijkstra(w, a, z, L)

2

3 L(a) = 0

4 for all vertices x 6= a do

5 L(x) =∞
6 T = set of all vertices whose shortest distance

from a has not been found

7 while z ∈ T do

8 choose v ∈ T with minimum L(v)

8 T = T − {v}
9 for each x ∈ T adjacent to v do

11 L(x) = min{L(x), L(v) + w(v, x)}

Just like the Prim’s algorithm, the running time of this al-

gorithm is O(m log n), where m is the number of edges, and

n is the number of nodes.



CPSC-320: Intermediate Algorithm Design and Analysis 130

? Shortest Path Tree

CPSC-320: Intermediate Algorithm Design and Analysis 131

? MSP



CPSC-320: Intermediate Algorithm Design and Analysis 132

? Shortest Path Tree for directed graph

CPSC-320: Intermediate Algorithm Design and Analysis 133

Correctness of Dijkstra’s Algorithm

We now show that the algorithm IS correct when all edge

weights are nonnegative. Let δ(s, v) be the true cost of a

shortest path from the source s to node v. Just as in the

proof of correctness of Prim’s algorithm, correctness follows

from the following claim:

Claim: If the partially constructed tree T , constructed after

i edges have been added, is a subtree of some shortest path

tree, then so is the tree T ′, constructed after i + 1 edges are

added.

Proof of claim: Let Tfinal be some shortest path tree

that contains T as a subtree. Let (u, v) be the (i + 1)st

edge added by the algorithm. If Tfinal contains (u, v), we

are done. Otherwise, let P be the path of Tfinal from the

source s to v.



CPSC-320: Intermediate Algorithm Design and Analysis 134

?

Let T ′final be the tree obtained from Tfinal by removing the

edge into v of tree Tfinal (in our example this edge is (b, v)

and adding the edge (u, v). The subtree of Tfinal rooted at

v hangs beneath u in T ′final.

We claim that the path from s to v in T ′final is no more costly

than the path from s to v in Tfinal and so T ′final is indeed

a shortest path tree of the graph. To see this, let y be the

first node on path P that is not in tree T (note that y may

CPSC-320: Intermediate Algorithm Design and Analysis 135

be v, although this is not so in the example above). Let x

be the predecessor of y on path P .

Since we are assuming that all the weights are non-negative,

and since a shortest path from s to v goes through y, it must

be the case that

δ(s, y) ≤ δ(s, v).

When x was added to the tree, the algorithm ensured that

cost(y) ≤ cost(x) + w(x, y) = δ(s, y).

Also, at the point v is added to the tree, it must be that

cost(v) ≤ cost(y)

since the algorithm always adds a node with minimum cost

and v is selected for addition before y. Putting all of this

together, we have

cost(v) ≤ cost(y) ≤ δ(s, y) ≤ δ(s, v).

Since parent(v) = u, there is a shortest path from the source

to v that passes through u and so T ′final is indeed a shortest

path tree of the graph. This completes the proof.



CPSC-320: Intermediate Algorithm Design and Analysis 136

Bellman-Ford Algorithm

We next describe the Bellman-Ford algorithm for the single-

source shortest paths problem, which works even when the

input graph has negative weights. The Bellman-Ford algo-

rithm has running time O(mn).

This algorithm for the single-source shortest paths problem

works correctly even in the presence of negative weights, and

is a generalization of Dijkstra’s algorithm. The algorithm

maintains, for each node v, a variable cost(v) which repre-

sents our current best guess as to what the shortest path is

from the source to v. Initially, cost(s) = 0 and cost(v) =∞
for all v 6= s (where s is the source). Just like Dijkstra’s al-

gorithm, the new Bellman-Ford algorithm builds a tree of

paths by “relaxing” all the edges of the graph in turn. “Re-

laxing” edge (u, v) means the following: if cost(u)+w(u, v)

is less than cost(v), we know that we can improve our path

to v by going through u. We do this by setting cost(v) to

CPSC-320: Intermediate Algorithm Design and Analysis 137

be cost(u) + w(u, v) and setting parent(v) to u.

It is necessary that edges be relaxed more than once in order

that the end result be a shortest path tree. The Bellman-

Ford algorithm simply relaxes all edges (in arbitrary order),

then repeats this step, and again, until all edges have been

relaxed n− 1 times:

for i <-- 1 to n-1 do

for each edge (u,v) do

if cost(v) > cost(u) + w(u,v) then

cost(v) <-- cost(u) + w(u,v)

parent(v) <-- u



CPSC-320: Intermediate Algorithm Design and Analysis 138

? Shortest Path Tree

CPSC-320: Intermediate Algorithm Design and Analysis 139

To show that the Bellman-Ford algorithm is correct, we need

to argue that after n− 1 iterations of the inner for loop, the

resulting tree is indeed a shortest paths tree. The argument

goes as follows: after the first iteration of the outer for loop

(when i = 1), the shortest path to any node which happens

to be one edge away from the source s in the shortest paths

tree has been found. The shortest path to those nodes that

are two edges away from the source in the shortest paths

tree is found after the second iteration of the outer for loop

(i = 2). And so on. Since all nodes are of distance at most

n−1 from the source in the shortest paths tree, the shortest

path to all nodes is found after n− 1 iterations of the outer

for loop.

Since the outer for loop is executed n times and the inner for

loop is executed m times, the total running time is O(mn).



CPSC-320: Intermediate Algorithm Design and Analysis 140

Floyd-Warshall Algorithm

Finally, we describe the Floyd-Warshall algorithm for the all

source (all destinations) shortest path problem. This algo-

rithm has running time O(n3). Note that this is better than

simply running the Bellman-Ford algorithm n times, once

per source, when the number of edges m grows faster than

n.

The idea of this algorithm is to compute, for all pairs (u, v),

the shortest path from u to v which passes through only

the first i nodes as intermediate nodes, 0 ≤ i ≤ n. Let

costi(u, v), 0 ≤ i ≤ n, denote the cost of this shortest path.

Upon completion of the algorithm the cost of the shortest

path between every pair of nodes is known. From this infor-

mation, the actual paths can easily be computed.

CPSC-320: Intermediate Algorithm Design and Analysis 141

Calculating cost0(u, v) is easy:

?

cost0(u, v)=







if u = v

if there is an edge from u to v, u 6= v

otherwise

We next show that once the costs costi−1(u, v) have been

computed, it is easy to compute costi(u, v). There are two

possibilities:

?

1. The shortest path from u to v visiting only nodes

in the set {1, . . . , i} actually only visits the first i − 1

nodes. Clearly, in this case

costi(u, v) =



CPSC-320: Intermediate Algorithm Design and Analysis 142

?

2. The shortest path from u to v visiting only nodes in

the set {1, . . . , i} does visit node i. In this case, assum-

ing that the graph has no negative cycles, the shortest

path from u to v visits i exactly once. Therefore,

costi(u, v) =

From these two cases, we can see that

costi(u, v) = min{costi−1(u, v), costi−1(u, i)+costi−1(i, v)}.

Using this fact, it becomes clear how to write the Floyd-

Warshall algorithm:

for i=1 to n

for each vertex u do

for each vertex v do

cost_i(u,v)= min{cost_{i-1}(u,v), cost_{i-1}(u,i) + cost_{i-1}(i,v)}

CPSC-320: Intermediate Algorithm Design and Analysis 143

Note that the main part of the algorithm consists of three

nested for loops, each iterated n times, with a constant-time

piece of code within the three loops. Therefore, the running

time of this algorithm is O(n3).

Upon completion of the algorithm, if the graph has no neg-

ative cycles, we have found the costs of the shortest paths

between all pairs (u, v). If the graph does have a negative

cycle, we can detect this as follows:

for each vertex u do

if cost(u,u) < 0 then output ‘‘negative cycle!’’

Space use can be large with this algorithm. The way it is

written above, we need n (the outside loop) n×n arrays (for

storing the costi(u, v)’s), so the space required is Θ(n3). We

can reduce this requirement by realizing that at iteration i

of the outer for loop, we only need array costi−1 ,so we can

reduce the space to Θ(n2). There is actually a way to get

the space down to O(n).



CPSC-320: Intermediate Algorithm Design and Analysis 144

? All-Pairs Shortest Paths


