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On a graph that is simply a linear list, or a graph consisting

of a “root” node v that is connected to all other nodes, but

such that no other edges are in the graph, breadth first and

depth first traversals can visit the nodes of the graph in the

same order. On other graphs, however, an ordering that is

possible with depth first search is not possible with breadth

first search and vice versa. Can you construct an example of

such a graph?

Game Trees

Trees are useful in the analysis of games like tic-tac-toe,

chess, and some economic games.

Consider a version of a game called nim. Initially, there

are n piles, each containing a number of identical tokens.

Players alternate moves. A move consists of removing one

or more tokens from one pile. The player who removes the

last token loses. As an example, let’s play with 2 piles: one

containing 3 tokens and one containing 2 tokens. The game
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tree follows.

?
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The corresponding minimax tree is

?
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The Minimum Spanning Tree Problem

Given a connected graph with n nodes in which the edges

are weighted, the goal is find a tree with n nodes which is

a subgraph of the original graph, and such that the sum of

weights of edges in the tree is minimized. Such a tree is

called a minimum spanning tree of the graph. Here is an

example:

?
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Efficient Algorithms for MST

1 Kruskal’s Algorithm

This algorithm first sorts the edges by weight. Then, the

edges are considered in order of increasing weight. When an

edge is considered, it is added to the tree (with its endpoints)

if it does not create a cycle with previously added edges.

2 Prim’s Algorithm

1. Pick arbitrary starting node.

2. Let e be an edge of least cost that connects a node already in the tree

to a node not yet in the tree. Add e (along with its endpoint) to the tree.

3. Repeat step 2 until all of the nodes are in the tree.

This is an example of a greedy algorithm: on each iter-

ation of step 2, the tree is expanded to include a new node

by choosing the cheapest possible edge.
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? Prim’s example
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? Kruskal’s example
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Correctness of Prim’s Algorithm

We now explain why Prim’s algorithm correctly returns a

minimum spanning tree of the input graph. This is our first

look at a proof that an algorithm is correct. In this case,

the algorithm consists of a sequence of steps, where in each

step we are adding a new edge to the MST. It is natural to

structure the proof of correctness so that it reasons about

one step at a time. The following proof does this as follows:

it shows that if the algorithm is “correct” after i steps, in

the sense that the partial tree constructed at that point is

a subtree of some MST, then the algorithm is also correct

after i + 1 steps.

Claim: If the partially constructed tree T , constructed

after i edges have been added, is a subtree of some min-

imum spanning tree, then so is the tree T ′, constructed

after i + 1 edges are added.
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? Proof of claim: Let Tfinal be some minimum span-

ning tree that contains T as a subtree. Let {x, y} be the

(i + 1)st edge added by the algorithm. If Tfinal contains

{x, y}, we are done. Otherwise, let P be the path in

Tfinal connecting x with y.

Let e be the first edge on path P that is not in the tree

T . (In our example, e is the edge {b, d}.) Let T ′final be

the tree obtained from Tfinal by removing e and adding

{x, y}. Then T ′final is also a spanning tree of our graph.
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We now show that the cost of T ′final is ≤ the cost of Tfinal.

This is because the weight of (x, y) must be ≤ the weight of

e, by the construction of our algorithm. Hence,

cost(T ′final) = cost(Tfinal) + weight((x, y))− weight(e)

≤ cost(Tfinal)

Thus, T ′final is a minimum spanning tree which contains T ′

as a subtree.

Here is one way to think about this proof that may be helpul.

Suppose that person A is applying Prim’s algorithm to build

up a minimum spanning tree. Suppose that person B hap-

pens to have a copy of some minimum spanning tree Tfinal

of the graph. Each time person A adds a new edge to the

tree T being built up, A asks B if the tree T is ok. Person B

compares T to Tfinal and if T is a subtree of Tfinal, person B

says “looks good.” But now suppose that when edge {x, y}
to the tree T , the resulting tree T ′ is no longer a subtree of

Tfinal. This time, B’s response to A is: “well, I don’t know
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whether what you are doing is correct or no, but what you

have now is not consistent with the tree that I happen to

know is a MST of the graph.”

Now, A is anxious to convince B that, even though the tree

that A is constructing is going to look different than B’s tree,

it still is going to be a MST. (Remember that there may be

lots of distinct MST’s for a given graph.)

What A can do to convince B is the following: A takes B’s

tree, adds the edge {x, y} and breaks the resulting cycle as

described in the proof above (i.e. by removing the first edge

e on the path in B’s tree from x to y that is not in A’s tree).

A thus obtains a new tree, call it T ′final, that is also a MST of

the graph. Since T ′final differs from Tfinal by just two edges,

B can easily see that the total cost of the edges in A’s tree is

indeed no more than the total cost of the edges in B’s tree,

and is therefore a MST.
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Implementation and running time of Prim’s Al-

gorithm

A good data structure for storing the nodes that are not yet

in the MST is a heap (also known as a priority queue), where

the key used to order the heap elements is the cost, cost(u).

The main heap operations needed are:

• insert all elements into the heap (Time: O(n))

• extract the minimum element (Time: O(log n) )

We can now analyze the running time of the algorithm.

• We initially build the heap once. Total time: O(n).

• While looping over all nodes, we do exactly one “extract

the minimum element” operation each iteration through

the loop. Total time: O(n log n).

There are m edges. Total time: O(n log n + m). For a more

detailed analysis of the running time anc pseudocode see the

textbook.
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Implementation of Kruskal’s MST Algorithm

In Kruskal’s algorithm, initially the edges are sorted; the

time to do this is O(m log m). Then, for each edge in in-

creasing order of weight (cost), if the edge does not create a

cycle with the edges added so far, then add the edge to the

tree.
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Shortest Path Algorithms

Description of the Shortest Path (SP) Problem

Let G = (V, E) be a directed graph, with weights w(u, v)

on the edges (negative edges are allowed). Suppose we wish

to find the shortest path between two points in a graph.

Unfortunately, the shortest path between two points may be

undefined if there is a “negative cycle” from u to v. For

example, consider the graph:

?
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There are several variations of the shortest path problem:

1. single source, single destination

2. single source, all destinations

3. all sources, all destinations

All known algorithms that solve (1) actually solve (2).

There are two possible outputs of an algorithm for variation

(2). They are:

• If the graph has no negative cycle then the output is a di-

rected spanning tree giving the shortest path to all nodes

reachable from the source. This is known as Shortest

Path Tree.

• If, on the other hand, the graph has negative cycles then

the algorithm reports a “negative cycle” and terminates.


