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Introduction to Graphs
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An undirected graph is a tuple G = (V, E) where V is

the set of nodes or vertices, and E is the set of edges,

each of which is of the form {i, j}, where i, j are nodes in

the set V . We use the following notation: |V | = n and

|E| = m.

?
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Graphs are very useful in modeling computational problems

in many areas. In some applications, the edges of the graph

are weighted. In others, the edges of the graph are directed,

represented graphically by drawing edges as arrows pointing

in the direction of the edge.

?
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Here are just a few examples of situations that can be mod-

eled by graphs.

• Computer networks. Here, nodes represent com-

puters or gateways, and edges represent links between

nodes. Network reliability problems involve testing if

the network is connected even when certain edges fail.

• Probabilistic graphical models. These are large,

sparse reasoning systems driving research in AI, speech

and computer vision.

?
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• Scheduling. We already saw an example in which

nodes represent courses that students want to take, and

an edge between two nodes indicates that those two

courses can’t be scheduled at the same time. A col-

oring of the nodes represents a schedule of the courses,

where each color represents a distinct time slot. A nat-

ural problem is to assign a color to each node in such

a way that no two adjacent nodes have the same color;

the goal is to minimize the number of colors used. An-

other example is that of scheduling jobs on a parallel

computer so as to minimize the total time until all jobs

are completed.

• VLSI designs are typically represented as graphs. A

basic “layout” problem is to arrange the nodes of the

graph in a limited area so as to ensure that no edges

cross.

• In many applications, the nodes of the graph represent
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places and the edge weights represent the distance be-

tween the places or the cost of getting from one place

to another.

• In DNA sequencing software, short DNA strands

may be represented by nodes and the degree of similarity

of two strands may be represented by the weight of the

edge connecting the strands.

• In computer vision, undirected graphs are used to

model image constraints and segmentation.
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Central computational problems that arise in manipulating

graphs for such applications include:

• Reachability: is node B of the graph reachable from

node A? Is the graph connected? Is it biconnected, i.e.

are there at least two disjoint paths between any pair of

nodes? Graph traversal algorithms such as depth first

search and breadth first search can be used to solve such

problems.

• Shortest path: in a weighted graph, what is the short-

est path from node A to node B? To try out software

that solves the shortest path problem, go to a mapping

website www.mapquest.com or www.mapblast.com.

• Min cost spanning tree: We will define this problem

precisely later, but for now think of a min cost spanning

tree as providing the cheapest possible way to broadcast

information across all edges of a weighted graph.
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• Matching: the goal is to “match” the nodes of the

graph into pairs, where a pair of nodes can be matched

if they are connected by an edge. Each node can be

matched to at most one other node.

• Flow: Suppose that the weights on the edges of a di-

rected graph represent capacities. One version of the

flow problem is to determine what is the maximum “flow”

that can be transported from a given source node to a

given sink node via the edges, where the amount of flow

across a given edge is bounded by its capacity.

• Coloring: we saw the coloring problem in practice

homework 1 (tutorial 2).

• Traveling Salesman: This is a classical problem on

weighted graphs. What is the cheapest way to start at

some node, visit all other nodes exactly once, and then

return to the start?
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In the next lectures, we’ll see beautiful algorithms for the

min cost spanning tree and shortest path problems. Efficient

algorithms are also known for matching and flow problems

(but we will not cover them). Unfortunately, no-one knows

of efficient algorithms for the coloring and traveling salesman

problems. At the end of the course we’ll return to these.

Graph Representation

Before discussing algorithms, we need to discuss data struc-

tures for representing graphs. There are two commonly-used

methods:

1. Adjacency Matrix Representation: A graph is repre-

sented by a n× n matrix A, where A(i, j) = 1 iff there

is an edge between the ith and jth nodes, and is 0 oth-

erwise.
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Given the following web graph:
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? Construct the graph transition matrix.
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We can compute Google’s rank vector using the PageR-

ank algorithm:

G = [1/4 2/4 0 0 1/4

1/6 0 2/6 1/6 2/6

0 0 0 2/4 2/4

1/8 0 0 4/8 3/8

0 1/2 0 1/2 0];

x=[.5 .3 .1 .1 0]; % Arbitrary initial vector.

R = x * ( G^(1000) ) % Rank vector after 1000 iterations.

The final rank is:

R = [ 0.11 0.18 0.06 0.39 0.26 ]

? The answer to the query “ book” is:
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2. Adjacency List Representation: For each node, main-

tain a list of nodes to which it is connected by an edge.

?

In this representation it is a little harder to get infor-

mation about an edge. For example, if you want to

know about edge (3,4), you know that you start with 3.

Then you have to traverse the list to determine if the
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edge between 3 and 4 exits. A benefit occurs in saving

space. The space used is proportional to the number of

nodes plus the number of edges. Because we have array

of size n and then we have two records for each edge

that’s in the graph, assuming space per record in lists

is constant. Hence, the space used is O(m + n). In an

application, we may expand node and edge records to

include additional information such as names(names of

cities), weighted edges (ie distances between cities), etc.

Graph Traversal Algorithms

Graph traversal algorithms are useful in answering reacha-

bility questions such as: Is a graph connected? Is the node

i reachable from node j? There are two standard methods

of searching through a graph.
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Depth First Search: Visit all of the nodes in a connected

graph by expanding the search from the currently visited

node. Initially, we set visited(i) = 0 for all nodes i. After

visiting each node, it is marked as visited. The algorithm is

initially called from any initial node of the graph.

DFS(s)

Visited (s) = 1

for each w adjacent to s do

if Visited (w) = 0 then DFS(w)

?
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Other possible traversal orderings of the nodes would also be

consistent with this algorithm. What is the running time of

this algorithm?

?

Breadth First Search: Always visit an unvisited node

that is closest to the starting vertex. For example,

?
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The following algorithm uses a queue Q to keep track of the

order in which nodes are visited. Initially, Q is empty and

no node has been visited.

bfs(s)

put node s in the queue Q

while Q is not empty

remove node v from the top of the queue

visited(v) ← 1

for all w adjacent to v

if visited(w) = 0 and w is not in Q, then

add w to Q (and mark that it is in Q).

?
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On a graph that is simply a linear list, or a graph consisting

of a “root” node v that is connected to all other nodes, but

such that no other edges are in the graph, breadth first and

depth first traversals can visit the nodes of the graph in the

same order. On other graphs, however, an ordering that is

possible with depth first search is not possible with breadth

first search and vice versa. Can you construct an example of

such a graph?


