
CPSC-320: Intermediate Algorithm Design and Analysis 80

.

Quicksort

CPSC-320: Intermediate Algorithm Design and Analysis 81

The quicksort algorithm, developed by C. A. R. Hoare, is a

divide and conquer sorting algorithm.

• Divide: An array A[left, right] (left < right) is par-

tioned into three subarrays.

Array (1): A[left, middle-1]

Array (2): A[middle] (size is one)

Array (3): A[middle+1, right]

This is done such that

– Every element in (1) is ≤ every element in (2)

– Every element in (3) > every element in (2).

• Conquer: Recursively sort the arrays A[left, middle-1]

and A[middle+1, right].

CPSC-320: Intermediate Algorithm Design and Analysis 82

To sort the array A[1..n], a call Q-sort(A,1,n) is made.

function Q-sort(array A, integer index left, integer index right)

if (left < right)

middle <- Partition(A, left, right)

Q-sort(A, left, middle-1)

Q-sort(A, middle+1, right)

function Partition(array A, integer index left, integer index right)

{output is the integer index middle. A is changed in place. }

{for now, the partitioning pivot will be A[left] }

pivot <-- A[left]

L <-- left+1 {note that left < right}

R <-- right

while (L <= R) do

begin

while (L <= right) AND (A[L] <= pivot) do

L <-- L + 1

while (R >= left) AND (A[R] > pivot) do

R <-- R - 1

if (L < R)

swap (A[L],A[R]) {swap is a basic three-line function

L <-- L+1 to exchange the array elements }

R <-- R-1

end(while) {A[left] is the pivot. A[R] <= pivot }

swap(A[left],A[R])

return R {R is the middle. }

CPSC-320: Intermediate Algorithm Design and Analysis 83

? Example:

CPSC-320: Intermediate Algorithm Design and Analysis 84

Let middle = R. At the end of the partition algorithm, the

following is true.

1. middle >= left. i.e., middle is guaranteed to point into

the array.

2. All elements in A[left,middle-1] are <= A[middle].

3. All elements in A[middle+1,right] are > A[middle].

Analysis of Quicksort

The Quicksort algorithm does several types of operations,

including comparisons of array elements, comparisons of ar-

ray indices (such as left, right, R, and L), and swaps of data

elements. For simplicity, we’ll analyze the total number of

comparisons of array elements done in the algorithm. Anal-

ysis of the other types of operations is similar.

CPSC-320: Intermediate Algorithm Design and Analysis 85

All comparisons of array elements are done in the Partition

function. How many comparisons of array elements are done

when the input array contains n elements? Note that every

element of the array except the leftmost element is compared

with the pivot element exactly once, except possibly at the

end when the outer while loop is entered with L=R. In the

case that the outer loop is entered with L=R, both A[L] and

A[R] are compared with pivot, so the element A[L] = A[R]

is compared twice with the pivot. Therefore the number of

comparisons in the Partition function is:

?

However, the Partition function can be optimized to ensure

that the number of comparisons is always exactly n−1 (this

is left as a homework exercise).

CPSC-320: Intermediate Algorithm Design and Analysis 86

The next step is to understand what is the total number of

comparisons of the algorithm. This depends on the value of

middle at each recursive call. So, we need to make some

assumptions about the value of middle.

Let C(n) be the number of comparisons, assuming that mid-

dle always lies exactly in the center of the array. That is,

suppose that middle lies exactly half way between left and

right on every recursive call of the algorithm. For simplicity,

let n be odd and be of the form n = 2k − 1 for some k.

Then, A[left, middle − 1] and A[middle + 1, right] both

have (n− 1)/2 elements. Therefore, we have that

?

C(n) =

Note that C(1) = 0. The iteration method can be used to

solve this recurrence to obtain the result C(n) = Θ(n log n).

This turns out to be the best case for quicksort.

CPSC-320: Intermediate Algorithm Design and Analysis 87

Next, suppose that middle=left in each recursive call. Thus,

the rest of the elements are in A[middle + 1, right], and

A[left, middle − 1] is empty. Then, for the first of the

two recursive calls in Q-Sort, the number of comparisons is

equal to zero. In this case, if C(n) is the total number of

comparisons done by the algorithm, we have

?

C(n) =

CPSC-320: Intermediate Algorithm Design and Analysis 88

Randomized Quicksort

We want to avoid the worst-case scenario of Quicksort, where

pivot is either the smallest or largest element. The idea is

to choose pivot uniformly at random from the array ele-

ments. Specifically, the partition function could be changed

by adding the following two lines at the beginning:

choose i randomly and uniformly from the range [left,right]

exchange A[i] with A[left]

As a result, pivot is equally likely to be any element of the

array. Let C(n) be the expected number of comparisons

done on an array of n elements, averaging over all possible

runs of the algorithm. In what follows, we’ll also assume

that the elements of the array are all distinct. Then,

C(n) = (n−1)+(expected number of comparisons done in the two subproblems)

We want to continue get a recurrence for C(n).

CPSC-320: Intermediate Algorithm Design and Analysis 89

There are n possible outcomes for where pivot lies. (Here

we use the assumption that the elements are all distinct.)

If pivot has rank i where 1 ≤ i ≤ n, then the expected

number of comparisons done is equal to the expected number

of comparisons done on a subproblem of size i− 1 plus the

expected number of comparisons done on a subproblem of

size n− i. The expected number of comparisons done on the

two subproblems is:

?

CPSC-320: Intermediate Algorithm Design and Analysis 90

We expect that the solution to this recurrence lies between

Θ(n log n) and Θ(n2). Suppose we optimistically guess that

the solution is O(n log n) and try to prove this by induction.

Claim 6 C(n) ≤ an lg n for n ≥ 0 and for some a ≥ 0.

? Proof: The basis case is when n = 1. We know that

C(1) = 0 and so the claim is trivially true.

Induction: Let n ≥ 2. Assume that the claim is true

for 0 ≤ i < n. Then

CPSC-320: Intermediate Algorithm Design and Analysis 91

?

This proof can be extended to show that C(n) = Θ(n lg n).

CPSC-320: Intermediate Algorithm Design and Analysis 92

Quicksort is popular in practice:

• It is an in-place algorithm (as opposed to mergesort).

This means that the array can be sorted without needing

significant extra storage.

• The expected number of exchanges (swaps) done is small.

• There are many practical improvements that make the
basic algorithm faster; these are discussed in Hoare’s pa-
per. For example, (i) choose the pivot to be the median
of three randomly chosen elements, rather than choos-
ing it uniformly at random; (ii) use “sentinels” in the
partitioning code. The following code appears in the
partition function:

while (L<= right) and (A(L]<=pivot) do

L <- L + 1

The comparison of L with right can be omitted if we

have a sentinel i.e. a very large number in array position

n + 1; (iii) finally, Hoare’s paper has ideas on reducing

number of swaps, or exchanges.

CPSC-320: Intermediate Algorithm Design and Analysis 93

A Lower Bound for Sorting Algorithms

Let us begin by introducing binary decision trees

h — number of levels (tree height)

N — number of nodes

n — number of leaves

CPSC-320: Intermediate Algorithm Design and Analysis 94

The lower bound here applies to comparison-based sorting

algorithms (not to algorithms that examine bits of the ele-

ment to be sorted.) We show that any such deterministic

algorithm must do Ω(n log n) comparisons in the worst case.

We represent sorting algorithms on inputs with n elements

using a tree. e.g. for insertion sort on 3 elements.

?

CPSC-320: Intermediate Algorithm Design and Analysis 95

How many leaves does a comparison tree for sorting n el-

ements have? Hint: each different permutation of the ele-

ments occurs at least once as a leaf.

?

Define the height of a tree to be the number of edges

on the longest path from the root to a leaf. Note that

the height of a decision tree for a given sorting algorithm on

inputs of size n equals the worst-case number of comparisons

that the algorithm does on an input of size n.

Since a comparison tree is a binary tree, if it has height h,

the number of leaves in the tree is at most 2h. Therefore, if

h is the height of a comparison tree for sorting n elements,

we must have n! ≤ 2h. We use this to show h = Ω(n lg n).

