
CPSC-320: Intermediate Algorithm Design and Analysis 65

Finding the max of n elements in parallel

Suppose n distinct numbers are stored in an array A[1, . . . , n].

We describe a parallel algorithm for finding the max, due to

Leslie Valiant. We assume a very idealized parallel com-

puting model. In our model, there are n processors. In

one parallel comparison step, every processor may read two

numbers from memory, compare them, and write a value in

memory. The challenge in designing a parallel algorithm is

to utilize these processors in parallel so as to find the max

in as few parallel comparison steps as possible.

The algorithm works roughly as follows. The array A is

partitioned into
√

n subarrays, each with
√

n elements and

the set of processors is partitioned into
√

n subsets, each with
√

n processors. The algorithm calls itself recursively with

one subset of processors assigned to each subarray. There

are
√

n recursive calls, and all can be done in parallel. Let

m(i) be the maximum value in the ith subarray. The values

CPSC-320: Intermediate Algorithm Design and Analysis 66

m(i) are returned by the recursive calls, and one of these

values is the true maximum of the whole array.

In the second phase of the algorithm, the processors assigned

to the ith subarray determine if m(i) is indeed the maximum

of the whole array. Note that m(i) is the maximum of the

whole array if and only if m(i) ≥ m(j) for 1 ≤ j ≤ √n.

This is a total of
√

n comparisons, and these are done in

parallel by all processors assigned to the ith subarray.

To avoid floors and ceilings, it is convenient to describe the

algorithm when n > 2 is a perfect square (so that
√

n is an

integer). Also, it is convenient to use n = 2 as the base case.



CPSC-320: Intermediate Algorithm Design and Analysis 67

FIND-MAX(A, P), where A is an array of n numbers and P is a set of n

processors

If n = 2 then compare the two elements in A and return the maximum

Else {n > 2}

Divide A into root(n) subarrays, each containing root(n) numbers

Divide P into root(n) subsets, each containing root(n) processors

IN PARALLEL for each subarray, recursively call FIND-MAX on that

subarray with the corresponding subset of processors

Let m(i) be the maximum number in the i_th subarray, 1<=i<=root(n)

IN PARALLEL for the i_th subarray, determine if m(i) is the max of

m(1), m(2), ..., m(root(n)) as follows: IN PARALLEL, the j_th processor

in the i_th subset compares m(i) and m(j) and if m(i) < m(j) the fact

that m(i) is not the maximum of the whole array is communicated to all

other processors in the i_th subset of processors. If in the i_th

subset of processors there is no communication, then m(i) is the

maximum of the whole array and is returned by the algorithm.

CPSC-320: Intermediate Algorithm Design and Analysis 68

Let M(n) be the number of parallel comparison steps needed

to find the maximum element in array A. We have the

following recurrence for M(n):

?

M(n) =

The M(
√

n) term counts the number of parallel comparison

steps needed in a single recursive call. Since all the recursive

calls are done in parallel we don’t need to multiply this term

by
√

n. The additional +1 counts the single comparison

done by each processor in the second phase of the algorithm.

Again, since all processors are doing these comparisons in

parallel, only one parallel comparison step is needed.



CPSC-320: Intermediate Algorithm Design and Analysis 69

Again, we can solve this recurrence using the iteration method:

?

M(n) =

Note that the number of parallel comparison steps on an

input of size 16 is 3 and on an input of size 256 is only 4.

CPSC-320: Intermediate Algorithm Design and Analysis 70

Recurrences Table

The following table lists several recurrence relations and their

corresponding closed form expressions.

Recurrence Closed Form Expression

1. f(n) = f(n− 1) + 3 f(n) = Θ(n) (“linear”)

2. f(n) = f(n− 1) + 2n f(n) = Θ(n2) (“quadratic”)

3. f(n) = 2f(n/2) + n f(n) = Θ(n log n)

4. f(n) = f(n/3) + 1 f(n) = Θ(log n) (“logarithmic”)

5. f(n) = f(n/2) + n f(n) = Θ(n) (“linear”)

6. f(n) = 2f(n− 1) + 1 f(n) = 2Θ(n) (“exponential”)



CPSC-320: Intermediate Algorithm Design and Analysis 71

Using Proof by Induction to Solve Recurrence

Relations

Often when analyzing algorithms, the recurrence relations

one needs to work are similar to those above, but not so

“clean.” For example, there may be floors or ceilings in the

recurrences, or extra constants appearing inside the function

on the right hand side, as in the next example. Applying the

iteration method to such recurrences can be very messy. We

describe an alternative way to handle such recurrences in

this lecture.

The idea is very simple. Faced with a new recurrence,

1. Compare it to recurrences you already know (as in the

recurrences table) and find one that looks like the new

recurrence you are trying to solve.

2. Guess that the closed form expression to your new re-

currence is exactly the same as for the corresponding

simpler recurrence, ignoring constant factors. (This is

CPSC-320: Intermediate Algorithm Design and Analysis 72

why Θ notation comes in handy.)

3. Finally, use proof by induction to verify that your guess

is correct.

?

Example:






f(n) < 1000 n ≤ 7

f(n) < f(bn/3c + 5) + 1 n ≥ 8

f(30) =



CPSC-320: Intermediate Algorithm Design and Analysis 73

This recurrence looks like row 4 of the table above. There-

fore, we might guess that f(n) = Θ(log n). In order to

prove this, we need to show that f(n) = O(log n) and that

log n = O(f(n)). We will just do the first of these two tasks.

The other can be done in a similar fashion (try it).

Going back to the definition of O-notation, we see that to

show f(n) = O(log n) it is sufficient to show that f(n) ≤
c log2 n for some constant c and all n > 1.

Claim 4 For all n > 1, f(n) ≤ c log2 n.

A proof by induction has a base case, an induction hypothesis

and an induction step. The base case handles small values

of n. The induction hypothesis states that the claim is true

for all values of i < n, i.e. that for all i, 1 < i < n, f(i) ≤
c log2 i. The induction step proves that the claim is also true

for n, given that the claim is true for all i, 1 < i < n from

the induction hypothesis.

CPSC-320: Intermediate Algorithm Design and Analysis 74

?

Induction Step: We need to show that f(n) ≤
c log2 n. We will start with what we know about f(n),

namely the definition of f(n) given by the recurrence

relation, apply the induction hypothesis and some other

useful algebraic manipulations until we arrive at the con-

clusion we want, namely that f(n) ≤ c log2 n.

f(n) = f(bn/3c + 5) + 1



CPSC-320: Intermediate Algorithm Design and Analysis 75

In going from the first line to the second line, we want to be

able to apply the induction hypothesis. We can do this as

long as bn/3c + 5 < n, i.e. as long as n ≥ 8. In going from

the second to the third line, we are making our eventual task

easier by replacing the rather messy quantity bn/3c + 5 by

the simpler quantity n/2. The expression in second line is ≤
the expression in the third line as long as n ≥ 30. This tells

us that we need the base case to handle values of n < 30.

In going from line 4 to line 5, we learn that the constant c

needs to be at least 1 in order to be able to complete our

proof. We can now proceed with the base case of the proof.

?

Base Case: For all n, 1 < n < 30, f(n) ≤ c log2 n.

We saw above that f(30) < 1004. Therefore, for all

n, 1 < n < 30,

f(n) ≤

CPSC-320: Intermediate Algorithm Design and Analysis 76

At this point we have all the information we need to write

the complete proof, choosing c = 1004. Here it is:

Claim 5 For all n > 1, f(n) ≤ 1004 log2 n.

Base Case: We show that for all n, 1 < n < 30, f(n) ≤
1004 log2 n. Note that f(30) < 1004. In fact, for all n, 1 <

n < 30, f(n) ≤ 1004. Therefore, for all n, 1 < n < 30,

f(n) ≤ 1004 log2 n and we are done with the base case.

Induction Hypothesis: f(i) ≤ 1004 log2 i for all 1 <

i < n.

Induction Step: We need to show that if n ≥ 30 then

f(n) ≤ 1004 log2 n. Note that

f(n) = f(bn/3c + 5) + 1

≤ 1004 log2(bn/3c + 5) + 1 (by the induction hypothesis)

≤ 1004 log2(n/2) + 1 (since for n ≥ 30, bn/3c + 5 ≤ n/2)

= 1004 log2 n− 1004 log2 2 + 1

≤ 1004 log2 n (assuming that c ≥ 1)



CPSC-320: Intermediate Algorithm Design and Analysis 77

Using the same method, we could in fact prove that if f(n) is

described by a recurrence of the form f(n) = f(n/a)+Θ(1)

where a > 1 then f(n) = Θ(log n). Many of the other

recurrences in the table above can similarly be generalized,

yielding the same closed form expression when expressed us-

ing Θ-notation.

Here is the generalized table. As an exercise, see if you can

use proof by induction to explain the results summarized in

this table.

Recurrence Closed Form Expression

1. f(n) = f(n−Θ(1)) + Θ(1) f(n) = Θ(n) (“linear”)

2. f(n) = f(n−Θ(1)) + Θ(n) f(n) = Θ(n2) (“quadratic”)

3. f(n) = af(n/a) + Θ(n), a > 1 f(n) = Θ(n log n)

4. f(n) = f(n/a±Θ(1)) + Θ(1), a > 1 f(n) = Θ(log n) (“logarithmic”)

5. f(n) = f(n/a±Θ(1)) + Θ(n), a > 1 f(n) = Θ(n) (“linear”)

6. f(n) = af(n−Θ(1)) + Θ(1), a > 1 f(n) = 2Θ(n) (“exponential”)

CPSC-320: Intermediate Algorithm Design and Analysis 78

Row 5 of the original table can also be generalized in a differ-

ent way. Namely, suppose f(n) is described by a recurrence

of the form:

f(n) = f(n/a) + f(n/b) + Θ(n),

where a and b are positive constants. Then, if 1/a+1/b < 1,

f(n) = Θ(n). Again a straightforward proof by induction

argument can be used to establish this. On page 191 of the

text, this is done for specific values of a and b that arise in

a linear-time selection algorithm. See if you can follow the

proof there.

Later as we find recurrences for algorithms studied in this

course, we can refer back to this table to quickly figure out

what is the closed form expression for the recurrence (ignor-

ing constant factors). Another important point is that hav-

ing a grasp of how the “form” of a recurrence for f(n) deter-

mines the closed form expression for f(n) can help not only

in analyzing algorithms, but also in designing algorithms.

For example, the linear-time selection algorithm that we will



CPSC-320: Intermediate Algorithm Design and Analysis 79

see in a later lecture breaks an input of size n into two sub-

problems of sizes n/a and n/b, solves these recursively and

then finds the solution for the input of size n with an ad-

ditional Θ(n) operations. The designers of this algorithm

understood that the constants a and b needed to be such

that 1/a + 1/b < 1 in order to achieve their goal of a linear-

time algorithm. This knowledge helped them in the process

of designing the algorithm.


