CPSC-320: Intermediate Algorithm Design and Analysis 55

Towers of Hanoi pseudocode makes it clear that the number
of moves for a problem with n disks is:
1 n=1
2fln—1)4+1 n>1

f(n) =

It is a matter of great urgency to determine an analytical
expression for this quantity — recall that the end of the

world depends on this.

The most obvious thing about the recurrence is that the
number of moves doubles if we add a disk. Thus, while
increasing the disks from 1 to n, the computation (moves)

will double at each stage. This suggests a complexity of 2".

If we run Hanoi with n = 1,2, 3, it’s easy to see that the
number of moves is 1, 3, 7 respectively. This suggests a com-

plexity of 2" — 1. We can check this with induction.

CPSC-320: Intermediate Algorithm Design and Analysis 56

* Claim: f(n)=2"—1

Proof:

Basis: First we prove that the claim is true for some n,

say n = 1:

Induction Step: Now we assume that the claim is true for

n, and prove that it is true for n + 1:

Therefore, f(n) =2"—1forall n. m




CPSC-320: Intermediate Algorithm Design and Analysis

57

* Example: Merge Sort

Given n elements, divide them into 2 groups of size n /2.
Recursively sort the two subproblems using Merge Sort.
Then merge the sorted sublists together to form 1 sorted
list of size n. In the merging phase, the smallest element
in each sublist are compared and the smaller of these two
elements is added next to the sorted list and removed
from its sublist. It turns out that the merge step can be

completed with n — 1 comparisons in the worst case.

CPSC-320: Intermediate Algorithm Design and Analysis 58

To get an upper bound on the number of comparisons done
by merge sort, we'll just use the fact that the number of com-
parisons in the merge phase is at most n. Let C'(n) denote
the number of comparisons done on a list of n elements. If

n is a power of 2, we have the recurrence equation:
C(n)=0 n=1
C(n) < C(|n/2])+C([n/2])+n n>1

Solve this recurrence using the iteration method:

*

C(n) < C(n/2)+n




CPSC-320: Intermediate Algorithm Design and Analysis 59

*

Example 3: Celebrity Problem

Among n people, a celebrity is someone who is known by
everyone but does not know anyone. Suppose you want to
identify a celebrity among n people. You are allowed to ask
questions to of the form “does person x know person y?”

Your goal is to minimize the number of questions.

CPSC-320: Intermediate Algorithm Design and Analysis 60
function Celebrity1({1,2,...,n})
if n = 1 then
return n
else x <-- Celebrity1({1,2,...,n-1})
if x not= ‘‘none’’ and (n knows x) and (x does not know n) then

return x

else {determine if the nth person is a celebrity}

for i <-- 1 to n-1 do

if (n knows i) and (i does not know n) then

return

return n

function Celebrity2({1,2,...

if n = 1 then return n

if n knows n-1 then {n cannot be the celebrity}
x <-- Celebrity2({1,2, ...
if x = ‘‘none’’ then return

else if (n knows x) and (x does not know n) then

return x

else return

¢

¢

‘none’’

,n})

‘none’’

, n-1})

3

else {n-1 cannot be the celebrity}

x <-- Celebrity2({1,2, ...
if x = ‘‘none’’ then return

else if (n-1 knows x) and (x does not know n-1) then

return x

else return

¢ ‘none’’

‘none’’

, n-2,n})

3

‘none’’



CPSC-320: Intermediate Algorithm Design and Analysis 61

The two functions output either the number of the celebrity,
or “none” if no celebrity exists in the set. There can be at
most one celebrity in the set, and in a set of size 1, the single
person is a celebrity.
Which of the Celebrity functions uses the fewest questions?
To answer this, we first find recurrence relations that describe
the number of questions used by each function. Then, we
solve these recurrences to find closed form expressions.

Let C1(n) and Cy(n) be the “worst case” number of com-
parisons done by the Celebrityl and Celebrity2 algorithms.

Examination of those algorithms shows that

*
n=1
C’l(n): 1
n
n=1
Cg(n): 1
n >

CPSC-320: Intermediate Algorithm Design and Analysis 62

The base cases are obtained by noting that, in an input
set containing only one person, our convention is that this
person is a celebrity and no questions need to be asked. We
can solve these recurrences using the iteration method, to

learn which algorithm is better. We start with C1(n).

01 (n) =




CPSC-320: Intermediate Algorithm Design and Analysis 63

*

C’l(n) =

We conclude that the worst-case number of questions asked
by the function Celebrityl is n(n + 1) — 2. (This does not
look good, since the naive algorithm which asks each person
whether s/he knows each other person uses n(n — 1) com-
parisons; clearly if n > 2 then n(n+1)—2 > n(n—1). The
reason for this is that, as written, the Celebrityl algorithm
repeats some questions and also sometimes asks redundant

questions such as whether a person knows him /her-self.)

CPSC-320: Intermediate Algorithm Design and Analysis 64

We next solve the recurrence for Csy(n).

CQ (n) =

We see that Celebrity2 uses fewer questions than the “naive”
algorithm that does n(n — 1) comparisons, if n > 3. For
example, if n = 100 Celebrity2 uses 297 questions whereas

the naive algorithm uses 9,900 questions.



