
CPSC-320: Intermediate Algorithm Design and Analysis 47

.

Recurrence Relations

CPSC-320: Intermediate Algorithm Design and Analysis 48

Recurrence Relations

? Puzzle 2 Revisited: You are given 27 golf balls,

one of which is heavier than the rest, and a balancing

scale. Can you find the heavier ball with 3 weighings?

CPSC-320: Intermediate Algorithm Design and Analysis 49

Consider again the golf balls problem, in which there are n

balls. The following algorithm reduces a problem of size n

to a problem of size n/3 in one weighing. This algorithm

can only handle inputs n which are a power of 3.

GolfBalls(S) {S is a set of n balls where n is a

power of 3, and one ball is heavy.}
if n = 1 then

output the ball in S

else

divide S into 3 subsets of size n/3, say A,B,C

put A and B on either side of the scale

if wt(A) = wt(B) then GolfBalls(C)

if wt(A) < wt(B) then GolfBalls(B)

if wt(A) > wt(B) then GolfBalls(A)

Let W (n) denote the number of weighings by GolfBalls(S),

CPSC-320: Intermediate Algorithm Design and Analysis 50

where |S| = n. Then

W (n) = 1 + W (n/3), n = 3k, k ≥ 1,

W (1) = 0.

This first equation here is called a recurrence relation

because it describes W (n) as a function of W on a smaller

number (namely n/3). It tells us, for example,

• The number of weighings for 27 golf balls is 1 plus the

number of weighings for 9 golf balls.

• The number of weighings for 9 golf balls is 1 plus the

number for 3 golf balls.

• The number for 3 golf balls is 1 plus the number for 1

golf ball.

The second equation is called the base case and is needed

to tell us how many weighings are needed for the simplest

case in our algorithm.

CPSC-320: Intermediate Algorithm Design and Analysis 51

Solving this recurrence will give us a closed form expression

for the number of weighings as a function of n. We can solve

using the iteration method:

?

W (n) = 1 + W (n/3)

W (n) = 1 + 1 +

W (n) = 1 + 1 + 1 +

...

W (n) = 1 + 1 + . . . + 1
︸ ︷︷ ︸

i times

+

Let n = 3k and let i = k in the last expression. Then

W (n) =

W (n) =

W (n) =

CPSC-320: Intermediate Algorithm Design and Analysis 52

? Puzzle 3: Towers of Hanoi Given 3 pegs and n

disks of different sizes placed in order of size on one peg,

transfer the disks form the original peg to another peg

with the constraints that:

• Each disk is on a peg.

• No disk is ever on a smaller disk.

• Only one disk at a time is moved.

CPSC-320: Intermediate Algorithm Design and Analysis 53

HANOI(Start,Temp,End,n)

{Solve the towers of Hanoi for n ≥ 1 disks.}
if n = 1 then

Move Start’s top disk to End.

else

HANOI(Start,End,Temp,n− 1)

Move Start’s top disk to End.

HANOI(Temp,Start,End,n− 1)

CPSC-320: Intermediate Algorithm Design and Analysis 54

? Puzzle 3: Towers of Hanoi with 3 disks

