
CPSC-320: Intermediate Algorithm Design and Analysis 30

O-Notation

O- (Big-Oh) notation provides a way of classifying functions

according to their growth rates. For a given function g(n),

we denote by O(g(n)) the set of functions:

O(g(n)) = {f(n) : there exist positive constants c and n0

such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0}.

We write f(n) = O(g(n)) to indicate that f(n) is a member

of 0(g(n)).

? Is the statement 1
2n

2 − 3n = O(n2) true?

Is the statement n = O(n2) true?

CPSC-320: Intermediate Algorithm Design and Analysis 31

Θ-Notation

The Theta-notation asymptotically bounds a function from

above and from below. The definition is:

Θ(g(n)) = {f(n) : there exist positive constants c1, c2 and

n0 such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0}.

?

CPSC-320: Intermediate Algorithm Design and Analysis 32

? Is the statement 1
2
n2 − 3n = Θ(n2) true?

Is the statement n = Θ(n2) true?

Ω-Notation

The Omega-notation asymptotically bounds a function from

below. The definition is:

Ω(g(n)) = {f(n) : there exist positive constants c and n0

such that 0 ≤ c1g(n) ≤ f(n) for all n ≥ n0}.

CPSC-320: Intermediate Algorithm Design and Analysis 33

o-Notation

o- (Little-Oh) notation is like “<” while O notation is like

“≤”. The actual definition is:

o(g(n)) = {f(n) : For any positive constant c, there exist

n0 such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0}.

? Is the statement 2n = o(n2) true?

Is the statement 2n2 = o(n2) true?

CPSC-320: Intermediate Algorithm Design and Analysis 34

The following table summarizes the definitions that will con-

cern us.

Definition 1 Let f and g be two non-negative functions

that map the non-negative integers to the non-negative

integers.

We say that f(n) is: Mean that f(n) grows: Write: If:

little-oh of g(n) more slowly than g(n) f(n) = o(g(n)) limn→∞ f(n)/g(n) = 0

big-oh of g(n) no faster than g(n) f(n) = O(g(n)) there exist some c, n0 > 0:

for all n > n0, f(n) ≤ cg(n)

theta of g(n) about as fast as g(n) f(n) = Θ(g(n)) f(n) = O(g(n))

and g(n) = O(f(n))

approximately as fast as g(n) f(n) ≈ g(n) limn→∞ f(n)/g(n) = 1

equal to g(n)

omega of g(n) no slower than g(n) f(n) = Ω(g(n)) g(n) = O(f(n))

The definitions in the table give precise meanings to informal

statements such as: f(n) grows no faster than g(n). A great

feature of big-Oh notation is that it allows one to sweep

under the rug inessential terms of a function and focus on

the “dominant term.

The definition of big-Oh notation (second row of the table)

CPSC-320: Intermediate Algorithm Design and Analysis 35

is designed to compare the growth rate of functions when

constants are ignored. In contrast, the fourth row of the table

defines notation that is useful when one wants to compare

functions while taking constants into account. That is, if

f(n) is approximately equal to g(n), the dominant terms

have to be the exactly the same (including constants).

Limits are used in some of the definitions in the table. Recall

that limn→∞ f(n) = l if and only if for all s > 0 there exists

some n0 > 0 such that for n > n0, (l + s) > f(n) > (l− s).

?
∑n

i=1 i2 vs. n3.

Since
n

∑

i=1

i2 ≤ n3,

it follows that
n

∑

i=1

i2 = O()

We can look at this another way, which will be useful in

CPSC-320: Intermediate Algorithm Design and Analysis 36

other examples later. We first show that:

Claim 1 If limn→∞ f(n)/g(n) = r then f(n) = O(g(n)).

? Proof:

CPSC-320: Intermediate Algorithm Design and Analysis 37

We now apply this claim to show that
∑n

i=1 i2 = O(n3):

?

Question: Why not just define f(n) = O(g(n)) if and only

if limn→∞ f(n)/g(n) = r for some r ≥ 0?

Answer: If the above relation is true for a given pair of

expressions, then f(n) = O(g(n)) is indeed always true.

But there are some expressions where f(n) = O(g(n)) is

true by the formal definition of O notation, but for whom

the above relation is not true.

CPSC-320: Intermediate Algorithm Design and Analysis 38

For example, consider the functions

f(n) =







2n, if n is even

n, if n is odd

g(n) =







n, if n is even

2n, if n is odd

? Is f(n) = Θ(g(n))?

Does limn→∞ f(n)/g(n) exist?

CPSC-320: Intermediate Algorithm Design and Analysis 39

Claim 2 If limn→∞ f(n)/g(n) = r > 0 then f(n) =

Θ(g(n)).

? Proof:

From this claim, we see that in fact
∑n

i=1 i2 = Θ(n3).

CPSC-320: Intermediate Algorithm Design and Analysis 40

? n vs. n2.

? n2 + 2n vs. 2n2 + n

CPSC-320: Intermediate Algorithm Design and Analysis 41

? n2 vs. n log n

These functions arise frequently in analyzing algorithms.

Consider for example two sorting algorithms, Insertion

Sort vs. Quick Sort. The expected number of compar-

isons for each sorting technique, assuming that the input

is randomly permuted, is as follows:

Insertion Sort : cin
2 + o(n2) .

Quicksort : cqn logn + o(nlogn).

We want to compare these growth rates and focus on

the dominant term of each function. (For this purpose,

the constants ci and cq are unimportant.)

Let f(n) = cqn lg n (where lg n = log2 n).

Let g(n) = cin
2.

To compare growth rates, we can consider the limit of

their ratios.

CPSC-320: Intermediate Algorithm Design and Analysis 42

Intuitively we know that lg n grows much more slowly than

n and so we expect that limn→∞[lg n/n] = 0. To prove this,

we can apply l’Hopital’s Rule.

L’Hopital’s rule:

If the functions f and g are differentiable, limn→∞ f(n)

= limn→∞ g(n) = ∞, and limn→∞ f ′(n)/g′(n) exists, then

limn→∞ f(n)/g(n) = limn→∞ f ’(n)/g’(n).

Now, getting back to Quicksort vs. Insertion sort, we have

?

CPSC-320: Intermediate Algorithm Design and Analysis 43

Claim 3 If g(n) goes to infinity and f(n) = o(g(n)), then

2f(n) = o(2g(n)).

? Proof:

CPSC-320: Intermediate Algorithm Design and Analysis 44

? n vs. 2n

In this lecture, facts about limits were used, both to define

big-Oh and related notation, and to reason mathematically

about the relative growth rates of functions. We will use

O-notation extensively in this course, but almost always to

compare very simple functions. So we will rarely need to go

back to the “first principles” covered in this lecture. It is

sufficient in this course to have an reasonable intuitive feel

for limits – for example, you “know” that limn→∞ log n/n is

zero (even you’re not comfortable with l’Hopital’s rule).

Another thing to remember is that if you’re not sure how

CPSC-320: Intermediate Algorithm Design and Analysis 45

to compare the growth rates of two functions using limits,

you can always just evaluate the functions for a few values of

n (e.g. n = 10, 100, 1000). From these values, you can often

tell accurately if one function grows faster than the other.

Try this when doing the following exercise, if you get stuck.

Exercise: Order the following functions according to their

growth rates from slowest to fastest:

a) 22n f) n lg n

b)lg n g) 2n!

c)
√

n h)2n

d) nn i) lg(lg n)

e)lg2 n j) n!

k) 2n

The following fact may be useful if you apply the limit meth-

ods described in this lecture to solve this problem. (See also

the comments below in terms of other approaches.) Notice

how big-oh notation is used in Stirling’s formula.

Stirling’s Formula: n! =
√

2πn(n/e)n(1 + O(1/n)).

CPSC-320: Intermediate Algorithm Design and Analysis 46

?

a) 22n

b)lg n

c)
√

n

d) nn

e)lg2 n

f) n lg n

g) 2n!

h)2n

i) lg(lg n)

j) n!

k) 2n

