
CPSC-320: Intermediate Algorithm Design and Analysis 177

Reductions

Suppose we have a procedure f that transforms any instance

α of A into some instance β of B with the following proper-

ties:

1. f takes polynomial time.

2. The answers are the same. That is, α = 1 if and only if

β = 1.

Then f is a polynomial time reduction algorithm

?

CPSC-320: Intermediate Algorithm Design and Analysis 178

A problem Q reduces to another problem Q′ if Q is “no

harder to solve” than Q′.

?

Definition: Let L1, L2 be languages. We say L1 ≤p L2

(“L1 is polynomial time reducible to L2”) if there is a poly-

nomial time computable function f mapping binary strings

to binary strings, such that

x ∈ L1 if and only if f(x) ∈ L2.



CPSC-320: Intermediate Algorithm Design and Analysis 179

If we want to decide if an instance x is in the language L1, we

can first “reduce” this problem to the problem of deciding if

f(x) is in L2, and use the answer to determine whether x is

in L1.

?

CPSC-320: Intermediate Algorithm Design and Analysis 180

The Hamiltonian Cycle problem can be reduced to the Trav-

eling Salesman Problem, (HAM CYCLE ≤p TSP). We need

to describe an efficient algorithm that, given an instance G

=(V,E) of the Hamiltonian Cycle Problem, outputs an in-

stance I of the Traveling Salesman Problem.

?

Furthermore, it should be that G ∈ Ham-Cycle if and only

if I ∈ TSP. To do this, we must specify (i) what are the

cities of the instance I , (ii) what are the costs between each

pair of cities, and (iii) what is the bound k (recall the TSP

problem asks whether there is a tour of cost at most k).



CPSC-320: Intermediate Algorithm Design and Analysis 181

Let the nodes of G be 1, 2, . . . , n. The algorithm constructs

I as follows. First, the cities are the nodes of G, namely

1, 2, . . . n. Second, the distance dij from city i to city j is

defined as follows:

dij =







1, if {i, j} is in E

2, otherwise

Finally, the bound k is defined to be n.

? HAM-CYCLE ≤p TSP.

CPSC-320: Intermediate Algorithm Design and Analysis 182

? HAM-CYCLE ≤p TSP.



CPSC-320: Intermediate Algorithm Design and Analysis 183

NP-Completeness

The NP-complete languages are intuitively the hardest prob-

lems in NP. Formally,

Definition 2 L is NP-Complete if:

1. L is in NP, and

2. for all L′ in NP, L′ ≤P L.

Let NPC be the class of NP-Complete languages. If a lan-

guage L satisfies property 2, bu not necessarily property 1,

we say that L is NP-hard.

CPSC-320: Intermediate Algorithm Design and Analysis 184

Claim 10 If L is in NPC and L is in P, then NP = P.

? Proof:

Thus, proving that a problem is NP-complete provides strong

evidence that the problem does not does not have an efficient

algorithm.



CPSC-320: Intermediate Algorithm Design and Analysis 185

Cook proved that a logic problem called 3-CNF-SAT is NP-

complete. We will define the 3-CNF-SAT shortly. Given

Cook’s result, the following claim provides us with a powerful

method by which we can show that other problems are also

NPC.

Claim 11 : If language L1 is NPC, L1 ≤p L2, and L2 is

in NP then L2 is NPC.

? Proof:

CPSC-320: Intermediate Algorithm Design and Analysis 186

Thus, to prove that a problem L is NP-complete, it is suffi-

cient to show that

1. the problem is in NP (this is usually the easy part; you

just need to find an efficient verification algorithm for

the problem),

2. show that some problem L′ already known to be NP-

complete is reducible to L.

3-CNF-SAT

A famous NP-complete problem is the 3-CNF-SAT problem,

which is defined as follows. Given a boolean formula of the

form:

(x1 ∨ x5 ∨ x̄10) ∧ (x3 ∨ x̄7 ∨ x̄2) ∧ (x2 ∨ x4 ∨ x10) . . .

where xi is a variable that can be either true or false, can we

assign the variables true/false values such that the formula

evaluates to true (is satisfied)?



CPSC-320: Intermediate Algorithm Design and Analysis 187

? 3-CNF-SAT

CPSC-320: Intermediate Algorithm Design and Analysis 188

More generally, a 3-CNF-SAT formula is the conjunction

(“and,” or “∧”) of the clauses, each of which is a disjunction

(“or,” or “v”) of three literals, where a literal is a variable

or its complement.

A naive algorithm that solves this problem is to enumerate

all of the 2n possible truth assignments and for each, test if

the formula is true. Output “yes” if and only if a truth as-

signment is found that satisfies the formula. Corresponding

to this algorithm is a natural polynomial time verification

algorithm for 3-CNF-SAT. The verification algorithm takes

two inputs: a boolean formula φ that is an instance of 3-

CNF-SAT and a truth assignment T to the variables of φ.

The algorithm tests whether T satisfies the formula and out-

puts “yes” if so.



CPSC-320: Intermediate Algorithm Design and Analysis 189

The Clique Problem

We now introduce a new problem on graphs, namely the

Clique problem. We will show that the Clique problem is

NP-complete via a reduction from 3-CNF-SAT. Thus, the

Clique problem is the first problem we will prove is NP-

complete.

The Clique Problem is as follows: Given an undirected

graph G = (V, E), and a number k, does G have a clique of

size greater than or equal to k? A clique is a subset V ′ of V

such that every pair of nodes in V ′ is connected by an edge

of E.

?

CPSC-320: Intermediate Algorithm Design and Analysis 190

Again, this is an example of a problem for which there is no

known efficient algorithm; the best known algorithm requires

exponential time. A verification algorithm is as follows: the

two inputs are an instance (G, k) of the clique problem and

subset V ′ of the nodes of G. The algorithm checks that the

size is at least k and also that every pair of nodes in V ′ is

connected by an edge of E.

A Reduction from 3-CNF-SAT to CLIQUE

We now describe a reduction from the 3-CNF-SAT problem

to the CLIQUE (3-CNF-SAT ≤p CLIQUE).

? 3-CNF-SAT ≤p CLIQUE



CPSC-320: Intermediate Algorithm Design and Analysis 191

Let φ be an instance of 3-CNF-SAT, φ = C1 ∧ C2 ∧ . . . ∧
Cm, where each Ci is of the form Ci = li1 ∨ li2 ∨ li3. Each

literal lij is a variable from the set {x1, x2, . . . , xn} or its

complement. We describe an efficient algorithm that reduces

φ to an instance (G = (V, E), K) of CLIQUE. That is, the

algorithm takes φ, an instance of the 3-CNF-SAT problem,

and outputs a corresponding graph G and bound K, such

that φ is satisfiable if and only if G has a clique of size K.

For each clause Ci there are three nodes in the graph, one

per literal in the clause. Also, there is an edge between node

lri and lsj iff r 6= s and lri 6= l̄sj . The graph G = (V, E) has

now been described. The bound K is chosen to be equal to

m, the number of clauses of φ.

CPSC-320: Intermediate Algorithm Design and Analysis 192

?

This reduction algorithm can map an instance of 3-CNF-

SAT to an instance of CLIQUE in polynomial time. It

remains to show that φ is in 3-CNF-SAT (i.e. that φ is

a “yes”-instance of 3-CNF-SAT) iff (G = (V, E), K) is in

CLIQUE.



CPSC-320: Intermediate Algorithm Design and Analysis 193

We first prove that φ is in 3-CNF-SAT implies (G = (V, E), K)

is in CLIQUE. We need to show that G has a clique of size

K. Since φ is in 3-CNF-SAT, there is a truth assignment to

the variables that sets at least one variable in each clause to

true. Pick exactly one true literal per clause, and consider

the m nodes correspponding to these literals in the graph.

These nodes form a clique, because all chosen literals are

true, hence not complements of each other, and are in differ-

ent clauses. All of these literals are nodes in the graph that

are connected to each other.

Secondly, we need to prove implication to the left, i.e. that

(G = (V, E), K) is in CLIQUE implies φ is in 3-CNF-SAT.

Let V ′ be a clique of size K in G. We need to show that

φ has a satisfying truth assignment. We know that exactly

one node of V ′ corresponds to each clause of φ. If lsi is in V ′

then if lsi = xr, set xr to true. If lsi = x̄r then set xr to false.

This defines a consistent truth assignment that sets at least

one literal in each clause to true. Therefore, φ is satisfiable.

CPSC-320: Intermediate Algorithm Design and Analysis 194

Proving NP-completeness

Summarizing from previous lectures, here are the steps needed

to prove that a decision problem Π is NP-complete.

1. Show that Π is in NP, i.e. describe a verification algo-

rithm for the problem Π, explain why your algorithm is

correct, and show that your verification algorithm runs

in polynomial time. (This is usually the “easy” part of

the process, so it is easy to forget to do it!)

2. Pick a problem Π′ already known to be NP-complete,

and show that Π′ ≤p Π. That is, describe a reduction,

or mapping, f that maps instances of Π′ to instances of

Π. Things to be careful about:

(a) Make sure your reduction is going in the right direc-

tion. It is not correct to reduce your problem Π to a

problem that is already known to be NP-complete.

(If you do this, you are showing that your problem

can be solved by mapping it to a problem already



CPSC-320: Intermediate Algorithm Design and Analysis 195

known to be hard. This does not show that your

problem is hard, because it does not rule out the

possibility that there is a more simple way to solve

your problem.)

(b) Show that your reduction runs in polynomial time.

In particular, make sure that your reduction does

not depend on knowing the solution to the instances

involved.

(c) Show that your reduction is correct. That is, show

that for each instance x of Π′, (i) if x is a “yes”-

instance of Π′, then f(x) is a “yes”-instance of Π,

and (ii) if f(x) is a “yes”-instance of Π, then x is a

“yes”-instance of Π′. Remember to do both of these

parts.

CPSC-320: Intermediate Algorithm Design and Analysis 196

THE END

“We shall not cease from exploration

And the end of all our exploring

Will be to arrive where we started

And know the place for the first time.”

T.S. Eliot



CPSC-320: Intermediate Algorithm Design and Analysis 197

THE BEGINNING

“A new breed of explorers are now trekking the conti-

nent of analysis, bringing with them new tools and new

techniques. To progress they have jettisoned some of the

old ways and the old ideas. They keep secrets; they

prove things without giving proofs; and they use ran-

domness profusely. Having discovered a mountain in the

way of progress they’ve lightened their conceptual bur-

dens; they’ve dropped some of the classical ideas about

algorithms to get fast solutions. These brave souls are

prepared to have their algorithms sometimes fail, some-

times lie, and sometimes never return! It’s an exciting

time. Welcome to the beginning.”

Gregory Rawlins


