
CPSC-320: Intermediate Algorithm Design and Analysis 161

NP-Completeness

“mathematics may be defined as the subject in which we

never know what we are talking about, nor whether what

we are saying is true”

Bertrand Russell

• Is there a formal unifying theory of algorithms and lan-

guages?

• Is there an efficient algorithm for any problem?

• P=NP?

CPSC-320: Intermediate Algorithm Design and Analysis 162

A Hard Problem: Hamiltonian Path

Given a directed graph G which has two special nodes called

the source and the target, the problem is to determine if

there is a path from the source to the target that visits every

node in the graph exactly once. Let HAM-PATH be the set

of triples (G, s, t) where G is a graph, s and t are nodes of

G, and there is a path from s to t in G that visits every node

in G exactly once.

?



CPSC-320: Intermediate Algorithm Design and Analysis 163

? A simple solution: enumeration.

CPSC-320: Intermediate Algorithm Design and Analysis 164

Another Hard Problem: Traveling Salesman (TSP)

Given n cities, and the cost cij of getting from city i to city

j for 1 ≤ i, j ≤ n, the problem is to find the cheapest way

to visit every city exactly once and return to the starting

city. Such a cycle is called a tour. This problem is also

exponential.

So far in this course, we have focused on finding efficient

algorithms for computational problems. It is clearly de-

sirable to be able to identify which problems do have effi-

cient algorithms and which don’t. The theory of NP-

completeness addresses this need.



CPSC-320: Intermediate Algorithm Design and Analysis 165

Decision Problems

An abstract problem Q is a mapping from a set of problem

instances I to a set of problem solutions S.

?

Q = SHORTEST-PATH

To keep things simple, in our description of NP-completeness

we focus on decision problems, that is, problems with a

yes/no answer. Restricting attention to decision problems

is not a serious restriction. Non-decision problems can be

rephrased as decision problems.

CPSC-320: Intermediate Algorithm Design and Analysis 166

?

Q = PATH

Given G, u, v, k, is there a path from u to v of cost ≤ k?

?

Q = TSP

Given n cities, the cost cij of getting from city i to city

j for 1 ≤ i, j ≤ n, and a number k, is there a tour of

the cities of cost at most k?

Another simplifying assumption is that the input to all deci-

sion problems is in binary. We place angle brackets around

the input to denote the input written in binary. For exam-

ple, < G, u, v, k > denotes the binary encoding of the graph

G with vertices u, v and number k.



CPSC-320: Intermediate Algorithm Design and Analysis 167

Formal-Language Framework

An alphabet Σ is a finite set of symbols. A language L

over Σ is any set of strings made up of symbols from Σ. The

language of all strings over Σ is denoted Σ∗.

? Example:

A decision problem Q is entirely characterized by those prob-

lem instances that produce a 1 (yes) answer. We can, there-

fore, view Q as a Language L over Σ = {0, 1}:

L = {x ∈ Σ∗ : Q(x) = 1}

CPSC-320: Intermediate Algorithm Design and Analysis 168

? Examples:

An decision algorithm A accepts an input binary string

x if its output is A(x) = 1. We associate with a decision

algorithm A the set of binary strings on which A outputs

“yes” and we call this the language accepted by A.

A Language L is accepted in polynomial time by an algo-

rithm A if it is accepted by A and there is a constant k such

that for any length-n string x ∈ L, algorithm A accepts x

in time O(nk).



CPSC-320: Intermediate Algorithm Design and Analysis 169

? PATH

Complexity Classes

The polynomial (P) complexity class is defined as follows:

P =






L

∣
∣
∣
∣
∣
∣

there is an algorithm A that accepts L

(and only L) and runs in polynomial time







The class of languages in P are exactly the decision problems

that have efficient algorithms.

CPSC-320: Intermediate Algorithm Design and Analysis 170

Now we turn to problems that are not known to be in P.

It turns out that several problems that are not known to be

in P have the following property: Given a “yes” instance x

of the problem, there is a “short” (polynomial length) cer-

tificate (or witness) to the fact that x is a “yes” instance.

No such witness may exist for “no” instances (notice the

asymmetry).

The process of checking if a potential certificate does in-

deed show that the instance x is a “yes”-instance to a given

problem is referred to as a verification algorithm. Sup-

pose someone wants to convince you that the graph G is in

the language HAM-PATH. The person could give you a list

of n nodes starting at the source s and ending at the target

t. Given the list, you could check whether each pair of nodes

in the list is connected by an edge and whether each node of

the graph appears exactly once in the list. If so, you would

be convinced that < G, s, t > is in HAM-PATH. You are

acting as a “verifier” for the HAM-PATH problem.



CPSC-320: Intermediate Algorithm Design and Analysis 171

?

If < G, s, t > is NOT in HAM-PATH, your algorithm will

not accept no matter what list of nodes c is presented to you.

More generally, a verification algorithm V for a language L

has two inputs: a binary string x and also a string y. V

has the property that if x is in L, then there is some string

y such that V accepts (x, y), but if x is not in L, then for

all strings y, V does not accept (x, y). We are interested

in verification algorithms that run in time that is bounded

CPSC-320: Intermediate Algorithm Design and Analysis 172

by a polynomial in the length of x. Thus, without loss of

generality, we can assume that the length of the “witness”

string y is also bounded by a polynomial.

? Verification example: TSP



CPSC-320: Intermediate Algorithm Design and Analysis 173

Definition: A verification algorithm V takes two bi-

nary inputs: an instance (e.g. graph and k, etc) of a problem

and a certificate. The language that is verified by V is

L =






x

∣
∣
∣
∣
∣
∣

there exists y such that V

outputs “yes” on input (x, y)}







Definition:

NP =







L

∣
∣
∣
∣
∣
∣
∣
∣
∣

there is a polynomial time verification algorithm

for L that takes as input an instance x of L

and a string y of length polynomial in L.







The name NP means “Nondeterministic Polynomial Time”.

Note that P is a subset of NP. To see this, let L be a decision

problem in P, (e.g. L could be the variation of the shortest

path problem in which the goal is to determine whether there

is a path of cost ≤ k from a given source to a given target).

If A is a polynomial time algorithm for L, there is some other

algorithm A′ that gets two inputs: an instance x of L and a

witness y. A′ ignores y and runs A on x.

CPSC-320: Intermediate Algorithm Design and Analysis 174

Intuitively, the class P consists of problems that can be

solved quickly. The class NP consists of problems for which

a solution can be verified quickly.

Not all problems are in NP. Examples of a problems not

known to be in NP are “game-like” problems, such as check-

ers (played on an n×n board. Given a particular configura-

tion of the game, does one player have a winning strategy in

the game? A strategy describes what move a player will take

given any configuration of the game. Since there are expo-

nentially many configurations, exponential time is required

even to write down a winning strategy.

Justification of “efficient = polynomial time”

Why is this a notion of “efficient” a good one? First, algo-

rithms with exponential running times don’t scale well and

therefore should be not be considered efficient. To illustrate

this, suppose that each step of an algorithm runs in one tenth

of a microsecond. The following algorithm compares, for dif-



CPSC-320: Intermediate Algorithm Design and Analysis 175

ferent values of n, the total time needed by an algorithm that

takes n, n2, n3, 2n, or 3n steps.

10 20 30 40 50 60

n .000001 .000002 .000003 .000004 .000005 .000006

second second second second second second

n^2 .00001 .00004 .00009 .000016 .00025 .00036

second second second second second second

n^3 .0001 .0008 .0027 .0064 .0125 .0216

second second second second second second

2^n .0001 .1 1.8 1.2 3.5 36.6

second second minutes days years centuries

3^n .0059 5.8 .6 385 2x10^7 1.3x10^12

second minutes year centuries centuries centuries

It is also true, however, that an algorithm with running

time which is a large polynomial (n10 for example), is not

going to scale well either. Why should such algorithms be

considered efficient? One reason is that we want our the-

CPSC-320: Intermediate Algorithm Design and Analysis 176

ory of efficient algorithms to be model-independent, i.e. the

insights gained from the theory should hold for any reason-

able “model” of what an algorithm is, (reasonable models

of algorithms include your favorite programming languages,

parallel computer models, and so on). The polynomial-time

definition of “efficient” ensures that this is the case.

Another justification for the definition is that it turns out

the bulk of the problems in P that are of practical interest

have running times that are bounded by a small polynomial.

Most of the problems that we have seen in this class, such

as minimum spanning tree, shortest paths, arithmetic oper-

ations, and data compression, can be formulated as decision

problems that have running time that is O(n3). Therefore,

a justification for our notion of P is that it seems to capture

the “right” problems while excluding a significant class of

problems that have exponential running time.


