
CPSC-320: Intermediate Algorithm Design and Analysis 151

Dynamic Programming

?
∑ ∏ −→∏ ∑

CPSC-320: Intermediate Algorithm Design and Analysis 152

String (DNA) Matching

A DNA strand can be thought of simply as a sequence of

nucleotides, where a nucleotide has one of four types, de-

noted by the letters A,C,G, and T. One problem of great

interest is to find a sequence of DNA that is common to two

individuals.

? Let the two individuals (X and Y ) have the following

DNA sequences:

X = TGCATA

Y = ATCTGAT

We want to compute the longest common subsequence,

Z, of X and Y .



CPSC-320: Intermediate Algorithm Design and Analysis 153

We formalise the problem as follows. Given two sequences

or strings X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn},
we want to find the longest common subsequence (LCS) of

X and Y .

We say that a sequence Z = {z1, z2, . . . , zk} is a subsequence

of X if there is some sequence of integers i1, i2, . . . , ik where

1 ≤ i1 < i2 < . . . < ik ≤ m, such that zj = xij , 1 ≤ j ≤ k.

If Z is a subsequence of both X and Y , we say that Z is a

common subsequence of X and Y .

?

CPSC-320: Intermediate Algorithm Design and Analysis 154

1 A brute force solution

We enumerate all subsequences of X and check each subse-

quence to see if it is also a subsequence of Y , while keeping

track of the longest sequence found. Each subsequence of

X corresponds to a subset of the indices {1, 2, . . . , m}. The

total number of subsequences of X is:

?

This calls for a different approach. The cost is too large so

we need to consider reduction techniques.



CPSC-320: Intermediate Algorithm Design and Analysis 155

The LCS problem has an optimal-substructure property:

Claim 9 Let X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn}
be subsequences, and let Z = {z1, x2, . . . , zk} be any LCS

of X and Y .

1. If xm = yn, then zk = xm = yn and Zk−1 is an LCS

of Xm−1 and Ym−1.

2. If xm 6= yn, then zk 6= xm and Z is an LCS of Xm−1

and Y .

3. If xm 6= yn, then zk 6= yn and Z is an LCS of Yn−1

and X.

?

CPSC-320: Intermediate Algorithm Design and Analysis 156

This claim allows us to reduce the size of the problem. Let

us define c(i, j) to be the length of an LCS of the sequences

Xi and Yj. If either i = 0 or j = 0 then c(i, j) = 0. Other-

wise, the optimal substructure of the LCS problem yiels the

following recursive formula

?

c(i, j)=







0 if i = 0 or j = 0

if i, j > 0 and xi = yj

max[c(i, j−1), c(i−1, j)] if i, j > 0 and xi 6= yj

Note that the subproblems are not independent. Divide and

conquer algorithms partition the problem into independent

subproblems, solve the subproblems recursively, and then

combine their solutions to solve the original problem. How-



CPSC-320: Intermediate Algorithm Design and Analysis 157

ever, in our case, we need a different approach: dynamic

programming. Dynamic programming solves every subprob-

lem just once and then saves its answer in a table, thereby

avoiding the problem of recomputing the answer every time

the subproblem is encountered. Here is the solution to our

problem:

• Construct a table c with m+1 rows and n+1 columns.

The row index goes from 0 to m and the column index

from 0 to n. The table stores c(i, j). The first row of c

is filled from left to right (using our recurrence relation),

then the second row, and so on.

• Construct a table b with m+1 rows and n+1 columns.

b(i, j) points to the table entry corresponding to the

optimal subproblem solution chosen when computing

c(i, j).

CPSC-320: Intermediate Algorithm Design and Analysis 158

?



CPSC-320: Intermediate Algorithm Design and Analysis 159

?

CPSC-320: Intermediate Algorithm Design and Analysis 160

The pseudo-code for this algorithm is in Section 15.4 of the

textbook.

? What’s the cost of the new algorithm?

Sometimes, we don’t need to compute a LCS, but only the

length of the LCS. A cheaper solution is to consider only two

rows at a time: the row being computed and the previous

row. The storage cost of this is

?


