
CPSC-320: Intermediate Algorithm Design and Analysis 145

Data Compression

We consider a basic problem in data compression, where

the goal is to represent text in binary with as few bits as

possible. In the approaches we will consider, a binary string

is associated with each letter in the alphabet of the text,

and the text is encoded simply by concatenating the codes

for the letters in order. There are two types of codes:

• Fixed-length encoding: given k letters in an alpha-

bet the ceiling of log k bits is used to represent each

letter.

• Variable length encoding: the number of bits used

to encode a letter depends on the frequency of the letter

in the text.

CPSC-320: Intermediate Algorithm Design and Analysis 146

a b c d e f

frequency 45 13 12 16 9 5 (total = 100)

Fixed-Length 000 001 010 011 100 101 (300 bits)

Variable-Length 0 101 100 111 1101 1100 (224 bits)

?



CPSC-320: Intermediate Algorithm Design and Analysis 147

The variable length encoding produces a 25% savings in file

length. Both encoding methods are examples of a prefix

code where no code word is a prefix of any other code word.

Decoding the text is very straightforward: repeatedly read

bits of the binary encoding until the code for some letter is

read, and then output that letter.

Our problem is to find an optimal prefix code for a given text,

given that the frequencies of the letters are known. By an

optimal prefix code, we mean a prefix code that minimizes

the total number of bits needed to encode the file. More

precisely, for each letter c, let f(c) represent the frequency,

the number of times c occurs in a file. Let dT (c) be the

length of the codeword for c as given by prefix tree T . Then

the number of bits needed to encode the file is

B(T ) =
∑

c

f(c)dT (c)

where T represents the given prefix tree and c is in the file’s

alphabet.

CPSC-320: Intermediate Algorithm Design and Analysis 148

Huffman’s Algorithm

The following algorithm, due to Huffman, finds the optimal

prefix tree for a given set of letter frequencies.

?



CPSC-320: Intermediate Algorithm Design and Analysis 149

Proof of correctness

Claim 7 Let C be the alphabet, let x, y be the two letters

of lowest frequency. Then, there is an optimal prefix code

in which the code words for x and y have the same length

and differ only in the last bit [i.e. x, y are siblings in the

prefix tree].

Proof: Let T be an optimal prefix tree. Let b, c be sib-

lings of maximum depth in T . Assume f(b) ≤ f(c) and

f(x) ≤ f(y). Now exchange x with b and y with c. Note

that f(b) ≥ f(x) and f(c) ≥ f(y). Since we are moving

letters with lower frequencies down the tree, the new tree T ′

obtained from these exchanges has cost no greater than T ,

i.e. B(T ′) ≤ B(T ). Hence, T ′ is also optimal and in T ′ x

and y are siblings.

CPSC-320: Intermediate Algorithm Design and Analysis 150

Claim 8 Suppose T ′ is an optimal prefix tree for (C −
{x, y})∪ {z} where z has frequency f(x) + f(y) and x, y

are letters with lowest frequency in C. Then the tree T

obtained from T ′ by making x and y children of z is an

optimal prefix tree for C.

Proof: Let S be any prefix tree for C. We need to show

that B(T ) ≤ B(S). By Claim 7, we need only consider

prefix trees S in which letters x and y are siblings. For such

a tree S, let S ′ be the tree obtained by removing x, y from

tree S. Clearly S ′ is a prefix tree for (C − {x, y}) ∪ {z}.
Therefore, B(S ′) ≥ B(T ′).

Also, comparing S and S ′, we see that

B(S ′) + f(x) + f(y) = B(S).

Similarly,

B(T ′) + f(x) + f(y) = B(T ).

Putting these tree identities together, it follows that B(T ) ≤
B(S), as desired.


