
CPSC-320 Intermediate Algorithm Design and Analysis Summer 2003

Homework # 2
Due Monday, May 26 at 6pm.

NAME:

Signature:

STD. NUM:

General guidelines for homeworks:

Before starting on this homework, review the homework guidelines provided on the first day
of class (also on the web under “Course Description”). Remember that it is encouraged to
discuss the problems with others in the class, but all write-ups are to be done on your own.
Homework grades will be based not only on getting the “correct answer,” but
also on good writing style and clear presentation of your solution. It is your
responsibility to make sure that the graders can easily follow your line of reasoning.
Try every problem. Even if you can’t solve the problem, you will receive partial credit for
explaining why you got stuck on a promising line of attack. More importantly, you will get
valuable feedback that will help you learn the material.
Please acknowledge the people with whom you discussed the problems and what sources you
used to help you solve the problem (e.g. books from the library). This won’t affect your
grade but is important as academic honesty.

1. We are given a list, L, of n elements and one more element, X, and the problem is to decide
whether X is in L. If X is in L we have to identify at least one element of L that it’s equal
to. One algorithm that solves this problem is linear search:

LINEAR_SEARCH (L,lower,upper,X)
{Look for X in L[lower..upper]
Report its position if found, else report 0.}

if L[lower] = X then
return lower

else
if lower = upper then

return 0
else

return LINEAR_SEARCH(l,lower+1,upper,X)
end

end



(a) Derive a recurrence relation for the cost of this algorithm in terms of the number of
comparisons. Then solve this recurrence to obtain an analytical expression for the worst
cost of this algorithm.



(b) Assume that X is equally likely to be any element of L, if it’s in L. Let pi be the
probability that X equals L[i], i = 1, . . . , n, and let p0 be the probability that X is not
in L. Derive an expression for the average cost in terms of n and p0. What are sensible
upper and lower bounds on this cost?

2. Let’s assume that the list L has been sorted so that L[1] < X < L[n]. Then X should be
close to L[�pn�], where

p =
X − L[1]

L[n] − L[1]

• Why is the above statement true? Try a simple example.



• Suppose we have an algorithm that first probes L[�pn�]. If X < L[�pn�], then it se-
quentially probes the elements L[�pn − i

√
n�], i = 1, 2, 3, . . ., until it finds the small-

est i for which X ≥ L[�pn − i
√

n�]. Similarly, if X > L[�pn�], then it sequentially
probes the elements L[�pn + i

√
n�], i = 1, 2, 3, . . ., until it finds the smallest i for which

X ≤ L[�pn + i
√

n�]. When this jump search ends, we know X’s position to within
roughly

√
n elements. That is, we have reduced the original problem to one whose size

is the square root of the size of the original one. Finally, we call our algorith recursively
with the sublist. What is the computational cost of this algorithm?

3. The following program determines the maximum in an unordered array A[1..n]

1 max = -infinity {or a very small number}
2 for i = 1 to n
3 compare A[i] to max.
4 if (A[i] > max) then
5 max = A[i]
6 end
7 end

Our goal is to determine the expected number of times that line 5 is executed. We assume
that the elements of A are unique and drawn uniformly at random.



(a) If a number is randomly chosen from A, what is the probability that this element is the
maximum element?

(b) What is the relation between A[i] and A[j], j = 1, 2, . . . , i, when line 5 is executed.

(c) For i in the range 1 ≤ i ≤ n, what is the probability that line 5 is executed?

(d) Let s1, s2, . . . , sn be n random variables, where si = 1 if line 5 is executed and si = 0
otherwise. What is E(si)?

(e) Let s = s1 + s2 + . . . + sn be the total number of times that line 5 is executed. Prove
that E(s) = Θ(lg n).


