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Multivariate matrix data

MMD refers to measurements of various types under various conditions:

I Longitudinal network data: Y an n ×m × T array
I yi,j,t = friendship between people i and j at time t
I yi,j,t = conflict between countries i and j at time t

I Multivariate relational data: Y and n ×m × p array
I yi,j,1 = friendship between people i and j , yi,j,2=coworker status, . . .
I yi,j,1 = conflict between countries i and j , yi,j,2 =trade, . . .
I yi,j,k = measurement under factor 1=i , factor 2= j in block k

I Multigroup multivariate data: {Yk ∈ Rnk×p; k = 1, . . . ,K}
I yi,j,k = expression data of gene j for person i in group k
I yi,j,k = score of student i on question j in school k



Cold War data

Cooperation and conflict data collected on 85 countries every fifth year
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How can we numerically describe variability, similarity across Y1, . . . ,Y7?



Leukemia data

Gene expression data on 327 cancer patients, each in one of seven groups:

group BCR E2A Hyperdip50 MLL T TEL other
sample size 15 27 64 20 43 79 79

We look at the 300 genes with highest rank variation across subjects.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

u1

u 3

0 10000 20000 30000 40000

−
0.

5
0.

0
0.

5
1.

0

rank of mean correlation

co
rr

el
at

io
n

●

●

●

●
●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●
●

●
●

●
●
●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●●
●

●
●

●●●●
●

●

●

●
●●
●●

●
●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●●
●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●

●

●

●●
●

●

●

●

●

●

●

●●

●
●
●

●
●
●

●

●
●●●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●●

●

●●●●●●

●

●●

●

●
●
●●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●
●
●

●

●
●
●

●●

●
●

●

●●

●

●

●

●
●
●

●

●
●●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●●

●
●

●●

●

● ●
●

●

●

●

●

●

●
●

●

●

●
●
●

●

●
●
●●

●

●●
●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●●

●●

● ●●

●

●

●
●●●

●
●
●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●
●●

●●
●

●●

●

●

●

●

●

●

●

●●
●
●

●●

●

●

●
●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●●●

●

●

●●

●

●●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●

●●●
●
●

●

●

●

●

●

●

●●●
●

●

●

●
●
●

●

●

●●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●

●

●

●
●
●

●

●

●

●

●
●
●●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●

●
●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●●
●

●

●●
●

●

●

●●

●

●

●

●

●

●

●●

●●

●
●
●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●●

●
●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●●
●
●
●

●
●

●

●
●●●

●

●●

●

●
●●

●●

●

●
●

●

●

●

●

●●

●

●

●

●
●
●

● ●
●

●

●
●

●

●

●
●
●●●●

●

●

●

●

●●
●●

●

●

●●
●

●

●

●

●●●

●

●

●

●
●

●

●

●●

●

●●
●

●

●

●

●
●

●●
●

●
●●
●

●

●●

●

●
●

●

●

●●

●
●

●

●
●

●

●
●

●

●

●

●●
●
●

●
●

●

●
●
●

●●●

●

●

●●

●
●
●
●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●●●●

●

●

●●

●●●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●●
●

●

●

●●
●

●
●

●

●

●

●●
●

●
●

●

●

●
●

●●

●

●●

●●

●

●
●

●

●

●●

●
●
●

●

●
●
●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●
●

●

●
●●

●●
●

●

●

●

●●
●
●
●

●
●

●●

●
●

●●

●
●
●
●
●

●●
●

●
●●

●

●●●

●

●●

●
●

●
●●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●●
●
●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●●●

●

●

● ●

●

●
●

●

●

●●

●

●●

●

●

●

●
●

●●

●
●

●
●●
●

●
●

●

●

●
●
●●

●

●

●

●

●●

●

●
●

●
●

●

●

●●
●●●
●

●

●●

●
●

●
●●

●

●●

●●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●
●
●

●

●

●

●
●

●
●

●

●
●
●

●●

●●
●●

●
●

●

●●
●

●●●

●

●●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●
●

●

●
●
●●

●

●
●
●
●

●

●

●

●

●●

●

●

●

●
●

●●●

●

●
●

●
●●

●●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●●
●
●
●

●

●

●
●●
●

●

●

●
●●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●
●
●

●

●●
●

●

●

●

●

●

●

●

●
●
●

●

●

●
●●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●
●
●●

●
●

●
●

●●
●

●

●

●
●

●
●

●
●

●

●

●●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●
●
●

●

●

●
●

●
●●
●
●

●
●

●

●●

●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●●
●

●
●

●

●

●

●●

●

●

●
●

●
●●●
●●

●

●
●●

●

●●●●

●

●

●●

●●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●
●
●

●

●

●

●
●

●

●
●

●
●

●●
●

●

●
●

●

●

●

● ●●
●
●

●

●

●

●

●●

●

●●

●
●

●

●

●

●●

●

●

●
●

●

●●

●

●●

●

●

●

●
● ●

●
●

●●

●

●

●
●

●

●

●

●
● ●

●

●●

●
●●●●

●

●

●

●
●
●

●

●

●
●
●

●

●

●

●
●

●
●

●●

●

●●

●

●
●

●

●●

●

●●●

●●●

●

●

●

●
●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●
●●
●

Y = UDVT Left-singular vectors of U separate the groups.
Yk = UkDkV

T
k How do correlations VkD

2
kV

T
k vary across groups?



Reduced rank matrix approximation

Low rank approximations are useful for describing row/column variability:

Symmetric matrices: Y = UΛUT + E , yi,j = uT
i Λuj + ei,j

Rectangular matrices: Y = UDVT + E, yi,j = uT
i Dvj + ei,j

The column dimension R of U is generally much smaller than that of Y,

R << min(m, n)

so that UΛUT , UDVT provide low-rank approximations to Y.

min
M:rank(M)=R

||Y−M||2 = ||Y− Û[,1:R]D̂[1:R,1:R]V̂
T

[,1:R]||2
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ŷ

R=9

−4 −2 0 2 4

−
4

−
2

0
2

4

y

ŷ
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ŷ

R=81



Model-based estimation

Ym×n = UDVT + E

I U and V are m × R and n × R orthonormal matrices ;

I D is a diagonal matrix of positive numbers;

I E is a matrix of i.i.d. Gaussian noise.

Parameters to estimate include U,D,V and the error variance. Why not
just use the SVD?

I Estimation: MSE of LS estimate can be very high.

I Missing data and prediction.

I A model accommodates regression, non-normal and hierarchical
data.



Pooling information

Consider p variables measured on individuals in K groups, and let Y be
the nk × p data matrix for group k.

Y1 = U1D1V
T
1 + E1

...
...

...

YK = UKDKVT
K + EK

Recall, E [YT
k Y] = VkD

2
kV

T
k , so Vk represents the covariance/principle

components of the observations in group k. Should we

I assume V1 = V2 = · · · = VK ?

I estimate each Vk separately (perhaps using SVD)?

I do something in-between?

V̂k = wkṼk + (1− wk)
∑
j 6=k

θkṼj

A model for heterogeneity among {V1, . . . ,VK} would help determine
the right balance.



The matrix Langevin distribution

V1, . . . ,VK ∼ i.i.d. p(V) ∝ etr(MTV)

where M is any p × R matrix. It is convenient to reparameterize:

M = ABCT

= ACTCBCT

= H[CBCT ]

I H ∈ Vp,R and is the mode of V.

I CBCT is positive definite and describes covariation.
I If M is orthogonal then C = I and tr(MTV) =

∑R
r=1 br ,rh

T
r vr .



A hierarchical eigenmodel

Y1 = U1D1V
T
1 + E1

...
...

...

YK = UKDKVT
K + EK

U1 ∼ uniform(Vn1,R) diag(D1) ∼ normal(0, τ 2I ) V1 ∼ Langevin(M)

...

UK ∼ uniform(VnK ,R) diag(DK ) ∼ normal(0, τ 2I ) VK ∼ Langevin(M)

M = ABCT

A ∼ uniform(Vp,R)

diag(B) ∼ normal+(0, η2I )

C ∼ uniform(VR,R)



Full conditional distributions

p(V1, . . . ,VK |A,B,CT ) =
K∏

k=1

c(B)etr(CBATVk)

= c(B)Ketr(KCBAT V̄)

Evidently,

p(A|V1, . . . ,VK ,B,C) ∝ etr([K V̄CB]TA)

p(C|V1, . . . ,VK ,A,B) ∝ etr([K V̄
T
AB]TC)

Additionally,

I The full conditional of B is nonstandard but low-dimensional.

I The full conditional distributions of {Uk} and {Vk} are Langevin.

I Full conditional distributions of {Dk , σk} are standard.

Gibbs sampling can be implemented with the aid of a rejection sampler
for the matrix Langevin distribution.



Leukemia data analysis

group BCR E2A Hyperdip50 MLL T TEL other

sample size 15 27 64 20 43 79 79

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

u1

u 3

0 10000 20000 30000 40000

−
0.

5
0.

0
0.

5
1.

0

rank of mean correlation

co
rr

el
at

io
n

●

●

●

●
●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●
●

●
●

●
●
●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●●
●

●
●

●●●●
●

●

●

●
●●
●●

●
●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●●
●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●

●

●

●●
●

●

●

●

●

●

●

●●

●
●
●

●
●
●

●

●
●●●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●●

●

●●●●●●

●

●●

●

●
●
●●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●
●
●

●

●
●
●

●●

●
●

●

●●

●

●

●

●
●
●

●

●
●●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●●

●
●

●●

●

● ●
●

●

●

●

●

●

●
●

●

●

●
●
●

●

●
●
●●

●

●●
●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●●

●●

● ●●

●

●

●
●●●

●
●
●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●
●●

●●
●

●●

●

●

●

●

●

●

●

●●
●
●

●●

●

●

●
●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●●●

●

●

●●

●

●●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●

●●●
●
●

●

●

●

●

●

●

●●●
●

●

●

●
●
●

●

●

●●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●

●

●

●
●
●

●

●

●

●

●
●
●●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●

●
●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●●
●

●

●●
●

●

●

●●

●

●

●

●

●

●

●●

●●

●
●
●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●●

●
●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●●
●
●
●

●
●

●

●
●●●

●

●●

●

●
●●

●●

●

●
●

●

●

●

●

●●

●

●

●

●
●
●

● ●
●

●

●
●

●

●

●
●
●●●●

●

●

●

●

●●
●●

●

●

●●
●

●

●

●

●●●

●

●

●

●
●

●

●

●●

●

●●
●

●

●

●

●
●

●●
●

●
●●
●

●

●●

●

●
●

●

●

●●

●
●

●

●
●

●

●
●

●

●

●

●●
●
●

●
●

●

●
●
●

●●●

●

●

●●

●
●
●
●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●●●●

●

●

●●

●●●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●●
●

●

●

●●
●

●
●

●

●

●

●●
●

●
●

●

●

●
●

●●

●

●●

●●

●

●
●

●

●

●●

●
●
●

●

●
●
●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●
●

●

●
●●

●●
●

●

●

●

●●
●
●
●

●
●

●●

●
●

●●

●
●
●
●
●

●●
●

●
●●

●

●●●

●

●●

●
●

●
●●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●●
●
●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●●●

●

●

● ●

●

●
●

●

●

●●

●

●●

●

●

●

●
●

●●

●
●

●
●●
●

●
●

●

●

●
●
●●

●

●

●

●

●●

●

●
●

●
●

●

●

●●
●●●
●

●

●●

●
●

●
●●

●

●●

●●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●
●
●

●

●

●

●
●

●
●

●

●
●
●

●●

●●
●●

●
●

●

●●
●

●●●

●

●●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●
●

●

●
●
●●

●

●
●
●
●

●

●

●

●

●●

●

●

●

●
●

●●●

●

●
●

●
●●

●●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●●
●
●
●

●

●

●
●●
●

●

●

●
●●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●
●
●

●

●●
●

●

●

●

●

●

●

●

●
●
●

●

●

●
●●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●
●
●●

●
●

●
●

●●
●

●

●

●
●

●
●

●
●

●

●

●●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●
●
●

●

●

●
●

●
●●
●
●

●
●

●

●●

●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●●
●

●
●

●

●

●

●●

●

●

●
●

●
●●●
●●

●

●
●●

●

●●●●

●

●

●●

●●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●
●
●

●

●

●

●
●

●

●
●

●
●

●●
●

●

●
●

●

●

●

● ●●
●
●

●

●

●

●

●●

●

●●

●
●

●

●

●

●●

●

●

●
●

●

●●

●

●●

●

●

●

●
● ●

●
●

●●

●

●

●
●

●

●

●

●
● ●

●

●●

●
●●●●

●

●

●

●
●
●

●

●

●
●
●

●

●

●

●
●

●
●

●●

●

●●

●

●
●

●

●●

●

●●●

●●●

●

●

●

●
●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●
●●
●

Data Y is 327× 300, or
can be broken into
{Y1, . . . ,Y7} of variable
row dimension but
common column
dimension.

We’ll fit the hierarchical eigenmodel and evaluate its goodness-of-fit
using the matrix similarity statistic

t(Y1, . . . ,Y7) =
∑
i<j

tr(|AT
i Aj |),

where Ak is Yk with the “subject effects removed:”

Yk = ÛD̂V̂
T

Ak = D̂V̂
T



Goodness of fit
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International relations data

Ordered probit model for discrete data:

yi,j,k =
∑

x∈{−1,0,+1}

xδIx (zi,j.k)

Eigenvalue decomposition model for latent Z:

Zk = UkΛkU
T
k + Ek

U1, . . . ,UK ∼ i.i.d. Langevin(M)

Λ1, . . . ,ΛK ∼ i.i.d. mvn(0, τ 2I)

Parameter estimation is similar to before: Letting M = ABCT ,

p(A|U1, . . . ,UK ,B,C) ∝ etr([K ŪCB]TA)

p(C|U1, . . . ,UK ,A,B) ∝ etr([K Ū
T
AB]TC), although

p(Uk |Zk ,M) ∝ etr(MTUk + UkZkU
T
k )

This last distribution is a Bingham-Langevin distribution.



International relations data
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Longitudinal social networks

Ut−1 Ut Ut+1

Yt−1 Yt Yt+1

Ut−1 Ut Ut+1

Yt−1 Yt Yt+1

Ut ∼ Langevin(Ut−1Σ)

Yt ∼ probit(UtΛtU
T
t )

Ut ∼ Langevin(Ut−1Σ + αYt−1Ut−1)

Yt ∼ probit(UtΛtU
T
t + βYt−1)



A simulated network



Another simulated network



Discussion

Summary:

I SVD and EVD are natural ways to describe matrix patterns.

I Variability across matrices can be described by variability across
decompositions.

I Modeling variability allows for information sharing across datasets.

I Parameter estimation can be done with Gibbs sampling.

Caveats:

I Interpretation of parameters is subtle.

I Models are more “statistical” than “generative.”
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