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Examples of Friendship Relationships

The National Longitudinal Study of Adolescent Health
⇒ www.cpc.unc.edu/projects/addhealth

– “Add Health" is a school-based study of the
health-related

behaviors of adolescents in grades 7 to 12.

Each nominated up to 5 boys and 5 girls as their friends
160 schools: Smallest has 69 adolescents in grades 7–12
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White (non-Hispanic)Grade 7
Black (non-Hispanic)
Hispanic (of any race)
Asian / Native Am / Other (non-Hispanic)
Race NA

Grade 8
Grade 9
Grade 10
Grade 11
Grade 12
Grade NA



Statistical Models for Social Networks

Notation
A social network is defined as a set of n social “actors" and a
social relationship between each pair of actors.

Yij =

{
1 relationship from actor i to actor j
0 otherwise

call Y ≡ [Yij ]n×n a sociomatrix
a N = n(n − 1) binary array

The basic problem of stochastic modeling is to specify a
distribution for Y i.e., P(Y = y)
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A Framework for Network Modeling

Let Y be the sample space of Y e.g. {0,1}N
Any model-class for the multivariate distribution of Y
can be parametrized in the form:

Pη(Y = y) =
exp{η·g(y)}
κ(η,Y)

y ∈ Y

Besag (1974), Frank and Strauss (1986)

η ∈ Λ ⊂ Rq q-vector of parameters
g(y) q-vector of network statistics.
⇒ g(Y ) are jointly sufficient for the model

For a “saturated" model-class q = 2|Y| − 1
κ(η,Y) distribution normalizing constant

κ(η,Y) =
∑
y∈Y

exp{η·g(y)}



Approximating the loglikelihood

Suppose Y1,Y2, . . . ,Ym
i.i.d.∼ Pη0(Y = y) for some η0.

Using the LOLN, the difference in log-likelihoods is

`(η)− `(η0) = log
κ(η0)

κ(η)

= log Eη0 (exp {(η0 − η)·g(Y )})

≈ log
1
M

M∑
i=1

exp {(η0 − η)·(g(Yi)− g(yobs))}

≡ ˜̀(η)− ˜̀(η0).

Simulate Y1,Y2, . . . ,Ym using a MCMC
(Metropolis-Hastings) algorithm ⇒ Handcock (2002).
Approximate the MLE η̂ = argmaxη{˜̀(η)− ˜̀(η0)}
(MC-MLE) ⇒ Geyer and Thompson (1992)
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Estimating the change in log-likelihood

Theoretically, the estimated value of `(θ)− `(θ0) converges
to the true value as the size of the MCMC sample
increases, regardless of the value of θ0.

However, in practice this convergence can be agonizingly
slow, especially if θ0 is not chosen close to the maximizer
of the likelihood. ⇒ Hunter and Handcock (2006)
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Measures of the Goodness-of-fit of models

As this is an Exponential family, natural to measure
goodness-of-fit via deviance

deviance = 2
[
`(saturated model)− `(θ̂))

]
and

residual deviance = 2
[
`(θ̂)− `(0)

]

“Standard" asymptotic arguments approximate this by a χ2

distribution
The standard asymptotic approximation can be very bad
here... but the deviance may still be a useful measure of fit
if properly calibrated. ⇒ Hunter and Handcock (2006)
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How can we tell if a model class is useful?

Many aspects:
Is the model-class itself able to represent a range of
realistic networks?
– model degeneracy: small range of graphs covered as

the parameters vary (Handcock 2003)

What are the properties of different methods of estimation?
– e.g, MLE, psuedolikelihood, Bayesian framework
– computational failure: estimates do not exist for

certain observable graphs
Can we assess the goodness-of-fit of models?
– appropriate measures and tests

(Besag 2000; Hunter, Goodreau, Handcock 2007)
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Model Degeneracy

idea: A random graph model is near degenerate if the model
places almost all its probability mass on a small number of
graph configurations in Y.
e.g. empty graph, full graph, an individual graph, no 2−stars,
mono-degree graphs

Example: The 2-star model

P(Y = y) =
exp{η1E(y) + η2S(y)}

c(η1, η2)
y ∈ Y

is near-degenerate for most values of η2 > 0

E(y) =
∑
i<j

yij S(y) =
∑

i<j<k

yijyik

← →8

Classes of statistics used for modeling

1) Nodal Markov statistics ⇒ Frank and Strauss (1986)

– motivated by notions of “symmetry” and “homogeneity”
– edges in Y that do not share an actor are

conditionally independent given the rest of the network
⇒ analogous to nearest neighbor ideas in spatial statistics

• Degree distribution: dk(y) = proportion of nodes of degree k in y.

• k-star distribution: sk(y) = proportion of k-stars in the graph y.

• triangles: t1(y) = proportion of triangles in the graph y.
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⇐ Mark S. Handcock Statistical Modeling With ERGM →

Figure: Some configurations for non-directed graphs
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Figure 2: Degeneracy probability plots for graphs with 7 actors.

21



Figure 3: Cumulative Degeneracy Probabilities for graphs with 7 actors.
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Geometry of Exponential Random Graph Models

Consider the alternative parametrization of the models
µ : Λ→ int(C) defined by

µ(η) = Eη [Z (Y )] ≡
∑
y∈Y

Z (y)
exp{ηT Z (y)}

c(η)

The mapping is injective:

µ(ηa) = µ(ηb)→ Pηa(Y = y) = Pηb (Y = y) ∀y .

The mapping in strictly increasing in the sense that

(ηa − ηb)T (µ(ηa)− µ(ηb)) ≥ 0

with equality only if Pηa(Y = y) = Pηb (Y = y) ∀y .
Represents an alternative parameterization of the model



Example of the 2−star model

P(Y = y) =
exp{η1E(y) + η2S(y)}

c(η1, η2)
y ∈ Y

where E(y) is the number of edges (0 – N =
(g

2

)
)

S(y) is the number of 2−stars (0 – M = 3
(g

3

)
)

µ1 = Eη[E(Y )] =
∑
i<j

E[Yij ] = NE[Y12]

– µ1 is the expected number of edges, or
1
Nµ1 is the probability that two actors are linked.

µ2 = Eη[S(Y )] =
∑

i<j<k

E[YijYik ] = ME[Y12Y13]

– µ2 is the expected number of 2−stars, or
1
Mµ2 is the probability that a given actor is tied to

two randomly chosen other actors.
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In some cases mixed parameterizations may be better

Let (t(1), t(2)) be a partition of t such that:

– t(1) is interpretable as a mean value parametrization
– t(2) is interpretable as the “natural" conditional log-odds

Consider similar partitions (η(1), η(2)) of η and (µ(1)(η), µ(2)(η))
of µ(η).
Let Λ(2) be the set of values of η(2) for η varying in Λ and C(1)

be the convex hull of {t(1)(y) : y ∈ Y}.
The mapping η : Λ→ Λ(2) × int(C(1)) defined by

η(η) = (µ(1)(η), η(2)) (1)

is a mixed parametization of the model (Y, t , η).
The components µ(1) and η(2) are variationally independent,
that is, the range of η(η) is a product space.



Degeneracy in the mean value parametization

Definition: A model is near degenerate if µ(η) is close to
the
boundary of C

Let degY = {y ∈ Y : Z (y) ∈ bdC} be the set of graph on the
boundary of the convex hull.
idea: Based on the geometry of the mean value
parametrization the expected sufficient statistics are close to a
boundary of the hull and the model will place much probability
mass on graphs in degY.
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This statement can be quantified in a number of ways:
Result: Let e be a unit vector in Rq and
bd(e) = supµ∈intC(eTµ).

1 µ(λe)→ bd(e)e as λ ↑ ∞.
2 Pλe,Y(Y ∈ degY)→ 1 as λ ↑ ∞.
3 For every d < bd(e), Pλe,Y(eT Z (Y ) ≤ d)→ 0 as λ ↑ ∞.
4 Let η0 ∈ intC.

Then Kullback− Leibler divergence(η0;λe)→∞ as λ ↑ ∞.



Effect of Near-Degeneracy on MCMC Estimation

Closely related to nice properties of simple MCMC
schemes (Geyer 1999).
– If a random graph model is simulated using a MCMC
based on a near-degenerate ψ it will very likely fail.

Full-conditional MCMC with dyad update:

M(ψ) = max
y∈Y
|ψT δ(yc

ij )|

where δ(yc
ij ) = Z (y+

ij )− Z (y−ij )

– As µ(ψ)→ bd(C), M(ψ)→∞
– There exists y ∈ Y with

logit
[
P(Yij = 1 | Y c

ij = yc
ij )
]

= ±M(ψ)

– If ψ is near-degenerate then M(ψ) is large and the
MCMC will mix very slowly.
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Example of degeneracy of the 2−star model

P(Y = y) =
exp{η1E(y) + η2S(y)}

c(η1, η2)
y ∈ Y

M(η) = max{|η1|, η1 + 2(g − 2)η2}

MCMC will usually mix
poorly.
If µ(η) close to (3,0) (e.g., η = (4.5,−18.4)) then
M(η) = 4.5
So an MCMC will approach (3,0) and stay there
(98.9% and 1.1% at (2,0) ∈ bd(C)).
If µ(η) close to (9,40) (e.g., η = (−3.43,0.683)) then
M(η) = 3.43. The model places 50% of its mass on graphs
with 2 or fewer edges and 36% on graphs with at least 19
edges.
The model is also unstable e.g., η = (−3.43,0.67))
µ(η) ≈ (4.4,17.1) and the model places almost all its mass
on empty graphs.
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Estimation within the mean value parametization

– If Z (yobs) ∈ int(C), the MLE of µ is Z (yobs).

– If Z (yobs) 6∈ int(C) the MLE of µ does not exist.
– The MLE µ̂ is unbiased and has minimum variance:

Eη(µ̂) = Eη [Z (Y )] = µ(η) =

[
∂ log c(η)

∂ηi

]
(η)

Vη(µ̂) = Vη [Z (Y )] =

[
∂2 log c(η)

∂ηi∂ηj

]
(η)

– An estimate of the variance-covariance is available using the
same MCMC.
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Existence and uniqueness of MLE

Let C be the convex hull of {Z (y) : y ∈ Y}
- the convex hull of the discrete support points.
Let int(C) be the interior of C.

Result (Barndorff-Nielsen 1978)
The MLE exists if, and only if, Z (yobserved ) ∈ int(C)
If it exists, it is unique and can be found by solving
the likelihood equations or by direct optimization of L.
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Figure 1: Enumeration of sufficient statistics for graphs with 7 nodes. The circles are centered on
the possible values and the area of the circle is proportional to the number of graphs with that value
of the sufficient statistic. There are a total of 2,097,152 graphs.
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How can we tell if a model class is useful?

Many aspects:
Is the model-class itself able to represent a range of
realistic networks?
– model degeneracy: small range of graphs covered as

the parameters vary (Handcock 2003)
What are the properties of different methods of estimation?
– e.g, MLE, psuedolikelihood, Bayesian framework
– computational failure: estimates do not exist for

certain observable graphs
Can we assess the goodness-of-fit of models?
– appropriate measures and tests

(Besag 2000; Hunter, Goodreau, Handcock 2007)



Existence and uniqueness of MC-MLE

Geyer and Thompson (1992) show the MC-MLE converges
to the true MLE as the number of simulations increases.
– also produces estimates of the asymptotic covariance
matrix, size of the MCMC induced error, etc.

Let CO be the convex hull of sampled sufficient statistics.
In practice, three cases:

1 Z (y) ∈ int(CO) ⊂ C: MC-MLE exists and is unique
2 Z (y) 6∈ int(CO) but is in int(C): MC-MLE does not exist,

even though MLE does
3 Z (y) 6∈ int(C): MC-MLE and MLE do not exist
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Goodness of fit intuition
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−→ η̂ −→ exp{η̂·g(y)}
↑ ↓

yobs Randomly generated
networks Ỹ1, Ỹ2, . . .

Question: How does yobs “look” as a representative of the
sample Ỹ1, Ỹ2, . . .?
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The eyeball test
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The eyeball test (cont’d)

The data:

School 10:  205 Students
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The models

Model A: g(y) contains terms for
# of edges
Homophily effects of grade, sex, and race factors
Main effects of grade, sex, and race factors∑

i (.632)iEPi , where EPi =# edges with i shared partners

Model B: g(y) contains terms for
# of edges
# of neighbors of the same sex (homophily effect)
# of 2-stars
# of triangles

(Note: It was necessary to use MPLE to fit Model B)



Quantitative checks for goodness of fit

A well-known example:
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Florentine marriage data
Edge indicates marriage
tie between families
Sides=degree + 3
Color=degree
Size=log(wealth)

model1 <- ergm(flomarriage ~ edges + kstar(2))



Quantitative checks for goodness of fit

A well-known example:

Acciaiuoli

Albizzi

Barbadori

Bischeri

Castellani

Ginori

Guadagni

Lamberteschi

Medici

Pazzi

PeruzziPucci

Ridolfi

Salviati

Strozzi

Tornabuoni

Florentine marriage data
Edge indicates marriage
tie between families
Sides=degree + 3
Color=degree
Size=log(wealth)

model1 <- ergm(flomarriage ~ edges + kstar(2))



Graphical GOF check: degree distribution

model1 <- ergm(flomarriage ~ edges + kstar(2))
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Graphical GOF: edgewise shared partner distribution

model1 <- ergm(flomarriage ~ edges + kstar(2))

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

edge−wise shared partners

pr
op

or
tio

n 
of

 e
dg

es

●

● ● ● ● ●

●

●

●

●

● ●

●

●

●

● ● ●

Goodness−of−fit diagnostics



Graphical GOF check: geodesic distance distribution

model1 <- ergm(flomarriage ~ edges + kstar(2))
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GOF check: Examples from Add Health networks

n=205

0 1 2 3 4 5 6 7 8 9 10

−
5

−
4

−
3

−
2

−
1

degree

lo
g−

od
ds

 fo
r 

a 
no

de

● ●

●

●

●

●

●

● ● ● ●

●
●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

● ● ●

0 1 2 3 4 5 6 7 8

−
6

−
5

−
4

−
3

−
2

−
1

0

edge−wise shared partners

lo
g−

od
ds

 fo
r 

an
 e

dg
e

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ●

1 3 5 7 9 11 13 15 17 19 21

−
10

−
8

−
6

−
4

−
2

0
2

minimum geodesic distance

lo
g−

od
ds

 fo
r 

a 
dy

ad

●

●
● ● ● ●

●

●
●

●

●

●

● ● ● ● ● ● ● ● ●

●

●

●

●
●

● ● ●
●

●
●

●
●

●
● ●

● ● ●
●

●
●

●

●

●
●

●
●

● ● ● ● ●
●

●
●

●

●

●

●

●

● ● ●

●

n=2209

0 1 2 3 4 5 6 7 8 9 10 11 12 13

−
7

−
6

−
5

−
4

−
3

−
2

−
1

degree

lo
g−

od
ds

 fo
r 

a 
dy

ad

● ●

●

●

●

●

●

●

●

●

● ● ● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ● ● ●

0 1 2 3 4 5 6 7 8 9

−
6

−
4

−
2

0

shared partners

lo
g−

od
ds

 fo
r 

a 
dy

ad

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ●

1 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59

−
15

−
10

−
5

0

minimum geodesic distance

lo
g−

od
ds

 fo
r 

a 
dy

ad

●

●

●

●
●

●
●

●●●●
●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●
●

●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●●●
●●●

●
●

●●
●

●
●

●

●

●

●●●

●

School 44, Edges + Attributes + WSPartner(1.5), free−degree

Hunter, Goodreau, Handcock (2007), JASA.



MCMC Testing

Significance tests based on comparing the observed value
of a statistics to a null probability distribution.
MCMC p−values ⇒ Besag and Clifford (1991), Besag
(2000)



Illustration: Empirical evidence of competition among
Darwin’s Finches

Island
Finch A B C D E F G H I J K L M N O P Q
Large ground finch 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
Medium ground finch 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0
Small ground finch 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0
Sharp-beaked ground finch 0 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 1
Cactus ground finch 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0 0
Large cactus ground finch 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
Large tree finch 0 0 1 1 1 1 1 1 1 0 0 1 0 1 1 0 0
Medium tree finch 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
Small tree finch 0 0 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0
Vegetarian finch 0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0
Woodpecker finch 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0
Mangrove finch 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Warbler finch 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table: Darwin’s finch data



MCMC Testing and p−values

Does the observed grouping of finch species on islands
happened by random chance or if it was the result of a
struggle in which only species which depended on different
food sources could coexist on an island.
To test this hypothesis, consider the test statistic

S̄2 =
1

m(m − 1)

∑
i 6=j

s2
ij ,

where m is the number of finch species, S =
(
sij
)

= AAT , and
A =

(
aij
)

is the bipartite graph in the table.



Figure: Null distribution of the test statistic S̄2



Figure: Number of pairs of finches sharing x islands, x = 0,1, ...,17



Summary

Network representations intersect with most sciences
Sparse models are being used to capture structural
properties
The models must depend on the scientific objective.
Some seemingly simple models are not so.
The inclusion of attributes is very important
– actor attributes
– dyad attributes e.g. homophily, race, location
– structural terms e.g. transitive homophily



We need better and more local models for social networks:
e.g. “nearest neighbor" ideas for local dependence
⇒ Baddeley and Moller (1989)
⇒ Snijders, Robins, Pattison, Handcock (2006)

Taking into account class membership is very important
– known classes “block models"
⇒ Wang and Wong (1987)



latent class and trait models are important
– an underlying latent “social space" of actors
⇒ Hoff, Raftery and Handcock (2002)
⇒ Hoff (2003, 2004 ,...)

– latent class models are very promising
⇒ Nowicki and Snijders (2001)

– latent class and trait models
⇒ Handcock, Raftery, Tantrum (2007); Krivitsky et. al

(2007)
⇒ Hoff (2005, 2007)

– grade of membership models
⇒ Airoldi, Blei, Feinberg (2007)


