Assessing the Goodness-of-Fit of Network Models

Department of Statistics University of Washington

Joint work with

David Hunter Steve Goodreau Martina Morris

and the

U. Washington Network Modeling Group

Supported by NIH NIDA Grant DA012831 and NICHD Grant HD041877

NIPS Networks Workshop 2007, December 8 2007

< 日 > < 団 > < 豆 > < 豆 > .

Examples of Friendship Relationships

- The National Longitudinal Study of Adolescent Health
 - \Rightarrow www.cpc.unc.edu/projects/addhealth
 - "Add Health" is a school-based study of the health-related

behaviors of adolescents in grades 7 to 12.

- Each nominated up to 5 boys and 5 girls as their friends
- 160 schools: Smallest has 69 adolescents in grades 7–12

School Community Stratum 44 mutual friendships by Grade

School Community Stratum 44 mutual friendships by Race

A *social network* is defined as a set of *n* social "actors" and a social relationship between each pair of actors.

A *social network* is defined as a set of *n* social "actors" and a social relationship between each pair of actors.

$$Y_{ij} = \begin{cases} 1 & \text{relationship from actor } i \text{ to actor } j \\ 0 & \text{otherwise} \end{cases}$$

ヘロア 人間 アメヨア 人間 アー

= nar

A *social network* is defined as a set of *n* social "actors" and a social relationship between each pair of actors.

$$Y_{ij} = \begin{cases} 1 & \text{relationship from actor } i \text{ to actor } j \\ 0 & \text{otherwise} \end{cases}$$

<ロト < 回 > < 回 > < 回 > < 回 > <

= nar

• call $Y \equiv [Y_{ij}]_{n \times n}$ a *sociomatrix*

• a
$$N = n(n-1)$$
 binary array

A *social network* is defined as a set of *n* social "actors" and a social relationship between each pair of actors.

$$Y_{ij} = \begin{cases} 1 & \text{relationship from actor } i \text{ to actor } j \\ 0 & \text{otherwise} \end{cases}$$

- call $Y \equiv [Y_{ij}]_{n \times n}$ a sociomatrix
 - a N = n(n-1) binary array
- The basic problem of stochastic modeling is to specify a distribution for Y i.e., P(Y = y)

A Framework for Network Modeling

Let \mathcal{Y} be the sample space of Y e.g. $\{0, 1\}^N$ Any model-class for the multivariate distribution of Y can be *parametrized* in the form:

$$\mathcal{P}_\eta(\mathbf{Y}=\mathbf{y}) = rac{\exp\{\eta \cdot oldsymbol{g}(\mathbf{y})\}}{\kappa(\eta,\mathcal{Y})} \qquad \mathbf{y} \in \mathcal{Y}$$

Besag (1974), Frank and Strauss (1986)

- $\eta \in \Lambda \subset R^q$ *q*-vector of parameters
- g(y) q-vector of network statistics.

 \Rightarrow g(Y) are jointly sufficient for the model

- For a "saturated" model-class $q = 2^{|\mathcal{Y}|} 1$
- $\kappa(\eta, \mathcal{Y})$ distribution normalizing constant

$$\kappa(\eta, \mathcal{Y}) = \sum_{\mathbf{y} \in \mathcal{Y}} \exp\{\eta \cdot \mathbf{g}(\mathbf{y})\}$$

- Suppose $Y_1, Y_2, \ldots, Y_m \stackrel{\text{i.i.d.}}{\sim} P_{\eta_0}(Y = y)$ for some η_0 .
- Using the LOLN, the difference in log-likelihoods is

$$\ell(\eta) - \ell(\eta_0) = \log \frac{\kappa(\eta_0)}{\kappa(\eta)}$$

- Suppose $Y_1, Y_2, \ldots, Y_m \stackrel{\text{i.i.d.}}{\sim} P_{\eta_0}(Y = y)$ for some η_0 .
- Using the LOLN, the difference in log-likelihoods is

$$\begin{split} \ell(\eta) - \ell(\eta_0) &= \log \frac{\kappa(\eta_0)}{\kappa(\eta)} \\ &= \log \mathsf{E}_{\eta_0} \left(\exp \left\{ (\eta_0 - \eta) \cdot g(\mathsf{Y}) \right\} \right) \end{split}$$

- Suppose $Y_1, Y_2, \ldots, Y_m \stackrel{\text{i.i.d.}}{\sim} P_{\eta_0}(Y = y)$ for some η_0 .
- Using the LOLN, the difference in log-likelihoods is

$$\begin{split} \ell(\eta) - \ell(\eta_0) &= \log \frac{\kappa(\eta_0)}{\kappa(\eta)} \\ &= \log \mathbf{E}_{\eta_0} \left(\exp \left\{ (\eta_0 - \eta) \cdot g(\mathbf{Y}) \right\} \right) \\ &\approx \log \frac{1}{M} \sum_{i=1}^M \exp \left\{ (\eta_0 - \eta) \cdot (g(\mathbf{Y}_i) - g(\mathbf{y}_{\text{obs}})) \right\} \\ &\equiv \tilde{\ell}(\eta) - \tilde{\ell}(\eta_0). \end{split}$$

- Suppose $Y_1, Y_2, \ldots, Y_m \stackrel{\text{i.i.d.}}{\sim} P_{\eta_0}(Y = y)$ for some η_0 .
- Using the LOLN, the difference in log-likelihoods is

$$\begin{split} \ell(\eta) - \ell(\eta_0) &= \log \frac{\kappa(\eta_0)}{\kappa(\eta)} \\ &= \log \mathbf{E}_{\eta_0} \left(\exp \left\{ (\eta_0 - \eta) \cdot g(\mathbf{Y}) \right\} \right) \\ &\approx \log \frac{1}{M} \sum_{i=1}^M \exp \left\{ (\eta_0 - \eta) \cdot (g(\mathbf{Y}_i) - g(\mathbf{y}_{\text{obs}})) \right\} \\ &\equiv \tilde{\ell}(\eta) - \tilde{\ell}(\eta_0). \end{split}$$

 Simulate Y₁, Y₂,..., Y_m using a MCMC (Metropolis-Hastings) algorithm ⇒ Handcock (2002).

- Suppose $Y_1, Y_2, \ldots, Y_m \stackrel{\text{i.i.d.}}{\sim} P_{\eta_0}(Y = y)$ for some η_0 .
- Using the LOLN, the difference in log-likelihoods is

$$\begin{split} \ell(\eta) - \ell(\eta_0) &= \log \frac{\kappa(\eta_0)}{\kappa(\eta)} \\ &= \log \mathbf{E}_{\eta_0} \left(\exp \left\{ (\eta_0 - \eta) \cdot g(\mathbf{Y}) \right\} \right) \\ &\approx \log \frac{1}{M} \sum_{i=1}^M \exp \left\{ (\eta_0 - \eta) \cdot (g(\mathbf{Y}_i) - g(\mathbf{y}_{\text{obs}})) \right\} \\ &\equiv \tilde{\ell}(\eta) - \tilde{\ell}(\eta_0). \end{split}$$

- Simulate Y₁, Y₂,..., Y_m using a MCMC (Metropolis-Hastings) algorithm ⇒ Handcock (2002).
- Approximate the MLE $\hat{\eta} = \operatorname{argmax}_{\eta} \{ \tilde{\ell}(\eta) \tilde{\ell}(\eta_0) \}$ (MC-MLE) \Rightarrow Geyer and Thompson (1992)

 Theoretically, the estimated value of ℓ(θ) – ℓ(θ₀) converges to the true value as the size of the MCMC sample increases, regardless of the value of θ₀.

- Theoretically, the estimated value of ℓ(θ) ℓ(θ₀) converges to the true value as the size of the MCMC sample increases, regardless of the value of θ₀.
- However, in practice this convergence can be agonizingly slow, especially if θ_0 is not chosen close to the maximizer of the likelihood. \Rightarrow Hunter and Handcock (2006)

 As this is an Exponential family, natural to measure goodness-of-fit via *deviance*

deviance = 2
$$\left[\ell(ext{saturated model}) - \ell(\hat{ heta}))
ight]$$

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 - の Q ()

and

residual deviance =
$$2\left[\ell(\hat{\theta}) - \ell(0)\right]$$

 As this is an Exponential family, natural to measure goodness-of-fit via *deviance*

deviance = 2
$$\left[\ell(ext{saturated model}) - \ell(\hat{ heta}))
ight]$$

and

residual deviance =
$$2 \left[\ell(\hat{\theta}) - \ell(0) \right]$$

• "Standard" asymptotic arguments approximate this by a χ^2 distribution

 As this is an Exponential family, natural to measure goodness-of-fit via *deviance*

deviance = 2
$$\left[\ell(ext{saturated model}) - \ell(\hat{ heta}))
ight]$$

and

residual deviance =
$$2\left[\ell(\hat{\theta}) - \ell(0)\right]$$

- "Standard" asymptotic arguments approximate this by a χ^2 distribution
- The standard asymptotic approximation can be very bad here...

 As this is an Exponential family, natural to measure goodness-of-fit via *deviance*

deviance = 2
$$\left[\ell(ext{saturated model}) - \ell(\hat{ heta}))
ight]$$

and

residual deviance =
$$2\left[\ell(\hat{\theta}) - \ell(0)\right]$$

- "Standard" asymptotic arguments approximate this by a χ^2 distribution
- The standard asymptotic approximation can be very bad here... but the deviance may still be a useful measure of fit if properly calibrated. ⇒ Hunter and Handcock (2006)

Many aspects:

- Is the model-class itself able to represent a range of realistic networks?
 - model degeneracy: small range of graphs covered as the parameters vary (Handcock 2003)

Many aspects:

- Is the model-class itself able to represent a range of realistic networks?
 - model degeneracy: small range of graphs covered as the parameters vary (Handcock 2003)
- What are the properties of different methods of estimation?
 - e.g, MLE, psuedolikelihood, Bayesian framework
 - computational failure: estimates do not exist for certain observable graphs

Many aspects:

- Is the model-class itself able to represent a range of realistic networks?
 - model degeneracy: small range of graphs covered as the parameters vary (Handcock 2003)
- What are the properties of different methods of estimation?
 - e.g, MLE, psuedolikelihood, Bayesian framework
 - computational failure: estimates do not exist for certain observable graphs
- Can we assess the goodness-of-fit of models?
 - appropriate measures and tests
 (Besag 2000; Hunter, Goodreau, Handcock 2007)

Model Degeneracy

idea: A random graph model is *near degenerate* if the model places almost all its probability mass on a small number of graph configurations in \mathcal{Y} .

e.g. empty graph, full graph, an individual graph, no 2-stars, mono-degree graphs

NO CO

Model Degeneracy

idea: A random graph model is *near degenerate* if the model places almost all its probability mass on a small number of graph configurations in \mathcal{Y} .

e.g. empty graph, full graph, an individual graph, no 2-stars, mono-degree graphs

• Example: The 2-star model

$$P(Y = y) = \frac{\exp\{\eta_1 E(y) + \eta_2 S(y)\}}{c(\eta_1, \eta_2)} \qquad y \in \mathcal{Y}$$

is near-degenerate for most values of $\eta_2 > 0$

E

ヨー つへで

Geometry of Exponential Random Graph Models

Consider the alternative parametrization of the models $\mu : \Lambda \rightarrow int(C)$ defined by

$$\mu(\eta) = \mathbf{E}_{\eta} \left[Z(Y) \right] \equiv \sum_{y \in \mathcal{Y}} Z(y) \frac{\exp\{\eta^{T} Z(y)\}}{c(\eta)}$$

• The mapping is injective:

$$\mu(\eta_a) = \mu(\eta_b) \rightarrow P_{\eta_a}(Y = y) = P_{\eta_b}(Y = y) \quad \forall y.$$

• The mapping in strictly increasing in the sense that

$$(\eta_a - \eta_b)^T (\mu(\eta_a) - \mu(\eta_b)) \ge 0$$

with equality only if $P_{\eta_a}(Y = y) = P_{\eta_b}(Y = y) \ \forall y$.

• Represents an alternative *parameterization* of the model

Example of the 2-star model

$$P(Y = y) = \frac{\exp\{\eta_1 E(y) + \eta_2 S(y)\}}{c(\eta_1, \eta_2)} \qquad y \in \mathcal{Y}$$

where E(y) is the number of edges $(0 - N = {g \choose 2})$

S(y) is the number of 2-stars $(0 - M = 3\binom{g}{3})$

Example of the 2-star model

$$P(Y = y) = \frac{\exp\{\eta_1 E(y) + \eta_2 S(y)\}}{c(\eta_1, \eta_2)} \qquad y \in \mathcal{Y}$$

where E(y) is the number of edges $(0 - N = \binom{g}{2})$

S(y) is the number of 2-stars $(0 - M = 3\binom{g}{3})$

$$\mu_1 = \mathbf{E}_{\eta}[E(Y)] = \sum_{i < j} \mathbf{E}[Y_{ij}] = N\mathbf{E}[Y_{12}]$$

 $-\mu_1$ is the expected number of edges, or $\frac{1}{N}\mu_1$ is the probability that two actors are linked.

Example of the 2-star model

$$P(Y = y) = \frac{\exp\{\eta_1 E(y) + \eta_2 S(y)\}}{c(\eta_1, \eta_2)} \qquad y \in \mathcal{Y}$$

where E(y) is the number of edges $(0 - N = \binom{g}{2})$

S(y) is the number of 2-stars $(0 - M = 3\binom{g}{3})$

$$\mu_1 = \mathbf{E}_{\eta}[E(Y)] = \sum_{i < j} \mathbf{E}[Y_{ij}] = N\mathbf{E}[Y_{12}]$$

 $-\mu_1$ is the expected number of edges, or $\frac{1}{N}\mu_1$ is the probability that two actors are linked.

$$\mu_2 = \mathbf{E}_{\eta}[S(Y)] = \sum_{i < j < k} \mathbf{E}[Y_{ij}Y_{ik}] = M\mathbf{E}[Y_{12}Y_{13}]$$

 $-\mu_2$ is the expected number of 2–stars, or $\frac{1}{M}\mu_2$ is the probability that a given actor is tied to two randomly chosen other actors. Figure 4: Regions of the parameter space of μ

Figure 5: Regions of the parameter space of $\boldsymbol{\theta}$

Let $(t^{(1)}, t^{(2)})$ be a partition of *t* such that:

- $-t^{(1)}$ is interpretable as a mean value parametrization
- $-t^{(2)}$ is interpretable as the "natural" conditional log-odds

Consider similar partitions $(\eta^{(1)}, \eta^{(2)})$ of η and $(\mu^{(1)}(\eta), \mu^{(2)}(\eta))$ of $\mu(\eta)$. Let $\Lambda^{(2)}$ be the set of values of $\eta^{(2)}$ for η varying in Λ and $C^{(1)}$ be the convex hull of $\{t^{(1)}(y) : y \in \mathcal{Y}\}$. The mapping $\eta : \Lambda \to \Lambda^{(2)} \times \operatorname{int}(C^{(1)})$ defined by

$$\eta(\eta) = (\mu^{(1)}(\eta), \eta^{(2)})$$
(1)

is a *mixed* parametization of the model (\mathcal{Y}, t, η) . The components $\mu^{(1)}$ and $\eta^{(2)}$ are variationally independent, that is, the range of $\eta(\eta)$ is a product space.

Degeneracy in the mean value parametization

• **Definition:** A model is *near degenerate* if $\mu(\eta)$ is close to the boundary of *C*

 Definition: A model is *near degenerate* if μ(η) is close to the boundary of C

Let deg $\mathcal{Y} = \{y \in \mathcal{Y} : Z(y) \in bdC\}$ be the set of graph on the boundary of the convex hull.

idea: Based on the geometry of the mean value parametrization the expected sufficient statistics are close to a boundary of the hull and the model will place much probability mass on graphs in deg \mathcal{Y} .
Figure 4: Regions of the parameter space of μ

This statement can be quantified in a number of ways: **Result:** Let e be a unit vector in \mathbf{R}^q and

$$\mathrm{bd}(\boldsymbol{e}) = \mathrm{sup}_{\mu \in \mathrm{intC}}(\boldsymbol{e}^T \mu).$$

③ For every
$$d < bd(e)$$
, $P_{\lambda e, \mathcal{Y}}(e^T Z(Y) \le d) \rightarrow 0$ as $\lambda \uparrow \infty$.

Effect of Near-Degeneracy on MCMC Estimation

Closely related to nice properties of simple MCMC schemes (Geyer 1999).

– If a random graph model is simulated using a MCMC based on a near-degenerate ψ it will very likely fail.

Effect of Near-Degeneracy on MCMC Estimation

Closely related to nice properties of simple MCMC schemes (Geyer 1999).

– If a random graph model is simulated using a MCMC based on a near-degenerate ψ it will very likely fail.

• Full-conditional MCMC with dyad update:

$$M(\psi) = \max_{\boldsymbol{y} \in \mathcal{Y}} |\psi^{T} \delta(\boldsymbol{y}_{ij}^{c})|$$

where
$$\delta(y_{ij}^c) = Z(y_{ij}^+) - Z(y_{ij}^-)$$

- As $\mu(\psi) \rightarrow \text{bd}(C), M(\psi) \rightarrow \infty$
- There exists $y \in \mathcal{Y}$ with

$$\mathsf{logit}\left[m{P}(m{Y}_{ij}=1\midm{Y}^{m{c}}_{ij}=m{y}^{m{c}}_{ij})
ight] =\pmm{M}(\psi)$$

- If ψ is near-degenerate then $M(\psi)$ is large and the MCMC will mix very slowly.

$$P(Y = y) = \frac{\exp\{\eta_1 E(y) + \eta_2 S(y)\}}{c(\eta_1, \eta_2)} \qquad y \in \mathcal{Y}$$

• $M(\eta) = \max\{|\eta_1|, \eta_1 + 2(g-2)\eta_2\}$

$$P(Y = y) = \frac{\exp\{\eta_1 E(y) + \eta_2 S(y)\}}{c(\eta_1, \eta_2)} \qquad y \in \mathcal{Y}$$

• $M(\eta) = \max\{|\eta_1|, \eta_1 + 2(g-2)\eta_2\}$ MCMC will usually mix poorly.

$$P(Y = y) = \frac{\exp\{\eta_1 E(y) + \eta_2 S(y)\}}{c(\eta_1, \eta_2)} \qquad y \in \mathcal{Y}$$

• $M(\eta) = \max\{|\eta_1|, \eta_1 + 2(g-2)\eta_2\}$ MCMC will usually mix poorly.

• If $\mu(\eta)$ close to (3,0) (e.g., $\eta = (4.5, -18.4)$) then $M(\eta) = 4.5$ So an MCMC will approach (3,0) and stay there (98.9% and 1.1% at (2,0) \in bd(C)).

$$P(Y = y) = \frac{\exp\{\eta_1 E(y) + \eta_2 S(y)\}}{c(\eta_1, \eta_2)} \qquad y \in \mathcal{Y}$$

- $M(\eta) = \max\{|\eta_1|, \eta_1 + 2(g-2)\eta_2\}$ MCMC will usually mix poorly.
- If $\mu(\eta)$ close to (3,0) (e.g., $\eta = (4.5, -18.4)$) then $M(\eta) = 4.5$ So an MCMC will approach (3,0) and stay there (98.9% and 1.1% at (2,0) \in bd(C)).
- If $\mu(\eta)$ close to (9,40) (e.g., $\eta = (-3.43, 0.683)$) then $M(\eta) = 3.43$. The model places 50% of its mass on graphs with 2 or fewer edges and 36% on graphs with at least 19 edges.

$$P(Y = y) = \frac{\exp\{\eta_1 E(y) + \eta_2 S(y)\}}{c(\eta_1, \eta_2)} \qquad y \in \mathcal{Y}$$

- $M(\eta) = \max\{|\eta_1|, \eta_1 + 2(g-2)\eta_2\}$ MCMC will usually mix poorly.
- If $\mu(\eta)$ close to (3,0) (e.g., $\eta = (4.5, -18.4)$) then $M(\eta) = 4.5$ So an MCMC will approach (3,0) and stay there (98.9% and 1.1% at (2,0) \in bd(C)).
- If $\mu(\eta)$ close to (9,40) (e.g., $\eta = (-3.43, 0.683)$) then $M(\eta) = 3.43$. The model places 50% of its mass on graphs with 2 or fewer edges and 36% on graphs with at least 19 edges.
- The model is also *unstable* e.g., $\eta = (-3.43, 0.67)$) $\mu(\eta) \approx (4.4, 17.1)$ and the model places almost all its mass on empty graphs.

Figure 4: Regions of the parameter space of μ

edges

(c) Trace plot of 2-stars

(d) Density of 2-stars

Estimation within the mean value parametization

- If $Z(y_{obs}) \in int(C)$, the MLE of μ is $Z(y_{obs})$.

Estimation within the mean value parametization

<ロ> < 四> < 四> < 回> < 回> < 回> < 回> <

э.

- If $Z(y_{obs}) \in int(C)$, the MLE of μ is $Z(y_{obs})$.
- If $Z(y_{obs}) \notin int(C)$ the MLE of μ does not exist.

- If $Z(y_{obs}) \in int(C)$, the MLE of μ is $Z(y_{obs})$.
- If $Z(y_{obs}) \notin int(C)$ the MLE of μ does not exist.
- The MLE $\hat{\mu}$ is unbiased and has minimum variance:

$$\mathbf{E}_{\eta}(\hat{\mu}) = \mathbf{E}_{\eta}\left[Z(Y)\right] = \mu(\eta) = \left[\frac{\partial \log c(\eta)}{\partial \eta_{i}}\right](\eta)$$
$$\mathbf{V}_{\eta}(\hat{\mu}) = \mathbf{V}_{\eta}\left[Z(Y)\right] = \left[\frac{\partial^{2} \log c(\eta)}{\partial \eta_{i} \partial \eta_{j}}\right](\eta)$$

 An estimate of the variance-covariance is available using the same MCMC.

Trace plot of 2-stars

Density of 2-stars

Figure 4: Regions of the parameter space of μ

Let *C* be the convex hull of $\{Z(y) : y \in \mathcal{Y}\}$ - the convex hull of the discrete support points. Let int(C) be the interior of *C*. Let *C* be the convex hull of $\{Z(y) : y \in \mathcal{Y}\}\$ - the convex hull of the discrete support points. Let int(C) be the interior of *C*.

Result (Barndorff-Nielsen 1978) The MLE exists if, and only if, $Z(y_{observed}) \in int(C)$ If it exists, it is unique and can be found by solving the likelihood equations or by direct optimization of \mathcal{L} .

Figure 1: Enumeration of sufficient statistics for graphs with 7 nodes. The circles are centered on 🛌 📃 🗠 🔍 🔿

Many aspects:

- Is the model-class itself able to represent a range of realistic networks?
 - model degeneracy: small range of graphs covered as the parameters vary (Handcock 2003)
- What are the properties of different methods of estimation?
 - e.g, MLE, psuedolikelihood, Bayesian framework
 - computational failure: estimates do not exist for certain observable graphs
- Can we assess the goodness-of-fit of models?
 - appropriate measures and tests
 (Besag 2000; Hunter, Goodreau, Handcock 2007)

Existence and uniqueness of MC-MLE

- Geyer and Thompson (1992) show the MC-MLE converges to the true MLE as the number of simulations increases.
 - also produces estimates of the asymptotic covariance matrix, size of the MCMC induced error, etc.

Let *CO* be the convex hull of *sampled* sufficient statistics. In practice, three cases:

- $Z(y) \in int(CO) \subset C$: MC-MLE exists and is unique
- ② Z(y) ∉ int(CO) but is in int(C): MC-MLE does not exist, even though MLE does
- **③** $Z(y) \notin int(C)$: MC-MLE and MLE do not exist

Figure 1: Enumeration of sufficient statistics for graphs with 7 nodes. The circles are centered on 🛌 📃 🗠 🔍 🔿

Many aspects:

- Is the model-class itself able to represent a range of realistic networks?
 - model degeneracy: small range of graphs covered as the parameters vary (Handcock 2003)
- What are the properties of different methods of estimation?
 - e.g, MLE, psuedolikelihood, Bayesian framework
 - computational failure: estimates do not exist for certain observable graphs
- Can we assess the goodness-of-fit of models?
 - appropriate measures and tests
 (Besag 2000; Hunter, Goodreau, Handcock 2007)

ERGM class $\exp{\{\eta \cdot g(y)\}}$

 $\begin{array}{c} \mathsf{ERGM} \\ \mathsf{class} \\ \mathsf{exp}\{\eta \cdot g(y)\} & \longrightarrow \\ & \uparrow \\ y^{\mathsf{obs}} \end{array}$

 $\begin{array}{ccc} \mathsf{ERGM} & (\mathsf{approx}) \\ \mathsf{class} & \mathsf{MLE} \\ \mathsf{exp}\{\eta \cdot g(y)\} & \longrightarrow & \widehat{\eta} \\ & & \uparrow \\ & & y^{\mathrm{obs}} \end{array}$

ERGM class $\exp{\{\eta \cdot g(y)\}}$ (approx) MLE $\rightarrow \qquad \widehat{\eta} \qquad \longrightarrow$ \uparrow y^{obs} Rain n

 $\overline{\mathbf{A}}$

Fitted ERGM $exp\{\widehat{\eta} \cdot g(y)\}$ \downarrow Randomly generated networks $\widetilde{Y}_1, \widetilde{Y}_2, \dots$

Question: How does y^{obs} "look" as a representative of the sample Y
₁, Y
₂,...?

The eyeball test

The data:

School 10: 205 Students

Simulated network, model A:

Simulated graph: By grade

The eyeball test (cont'd)

(Yikes!)

- Model A: g(y) contains terms for
 - # of edges
 - Homophily effects of grade, sex, and race factors
 - Main effects of grade, sex, and race factors
 - $\sum_{i} (.632)^{i} EP_{i}$, where $EP_{i} = \#$ edges with *i* shared partners
- Model B: g(y) contains terms for
 - # of edges
 - # of neighbors of the same sex (homophily effect)
 - # of 2-stars
 - # of triangles

(Note: It was necessary to use MPLE to fit Model B)

Quantitative checks for goodness of fit

A well-known example:

Florentine marriage data

- Edge indicates marriage tie between families
- Sides=degree + 3
- Color=degree
- Size=log(wealth)

ヘロア 人間 アメヨア 人間 アー

E 990

Quantitative checks for goodness of fit

A well-known example:

Florentine marriage data

- Edge indicates marriage tie between families
- Sides=degree + 3
- Color=degree
- Size=log(wealth)

model1 <- ergm(flomarriage ~ edges + kstar(2))</pre>

Graphical GOF check: degree distribution

model1 <- ergm(flomarriage ~ edges + kstar(2))
Goodness-of-fit diagnostics</pre>

< □ > < □ > < □ > < □ > < □ > < □ >

E

Graphical GOF: edgewise shared partner distribution

model1 <- ergm(flomarriage ~ edges + kstar(2))
Goodness-of-fit diagnostics</pre>

E
Graphical GOF check: geodesic distance distribution

model1 <- ergm(flomarriage ~ edges + kstar(2))
Goodness-of-fit diagnostics</pre>

E

590

GOF check: Examples from Add Health networks

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ① ○ ○

- Significance tests based on comparing the observed value of a statistics to a null probability distribution.
- MCMC *p*−values ⇒ Besag and Clifford (1991), Besag (2000)

◆ロ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Illustration: Empirical evidence of competition among Darwin's Finches

	Island																
Finch	A	В	С	D	Е	F	G	Н		J	Κ	L	Μ	Ν	0	Ρ	Q
Large ground finch	0	0	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1
Medium ground finch	1	1	1	1	1	1	1	1	1	1	0	1	0	1	1	0	0
Small ground finch	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	0	0
Sharp-beaked ground finch	0	0	1	1	1	0	0	1	0	1	0	1	1	0	1	1	1
Cactus ground finch	1	1	1	0	1	1	1	1	1	1	0	1	0	1	1	0	0
Large cactus ground finch	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0
Large tree finch	0	0	1	1	1	1	1	1	1	0	0	1	0	1	1	0	0
Medium tree finch	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
Small tree finch	0	0	1	1	1	1	1	1	1	1	0	1	0	0	1	0	0
Vegetarian finch	0	0	1	1	1	1	1	1	1	1	0	1	0	1	1	0	0
Woodpecker finch	0	0	1	1	1	0	1	1	0	1	0	0	0	0	0	0	0
Mangrove finch	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Warbler finch	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Table: Darwin's finch data a star a s

- Does the observed grouping of finch species on islands happened by random chance or if it was the result of a struggle in which only species which depended on different food sources could coexist on an island.
- To test this hypothesis, consider the test statistic

$$\bar{S}^2 = \frac{1}{m(m-1)}\sum_{i\neq j}s_{ij}^2,$$

where *m* is the number of finch species, $S = (s_{ij}) = AA^T$, and $A = (a_{ij})$ is the bipartite graph in the table.

Figure: Null distribution of the test statistic \bar{S}^2

Figure: Number of pairs of finches sharing x islands, x = 0, 1, ..., 17

◆ロ〉 ◆母〉 ◆臣〉 ◆臣〉 三臣 - のへで

- Network representations intersect with most sciences
- Sparse models are being used to capture structural properties
- The models must depend on the scientific objective.
- Some seemingly simple models are not so.
- The inclusion of attributes is very important
 - actor attributes
 - dyad attributes e.g. homophily, race, location
 - structural terms e.g. transitive homophily

- We need better and more local models for social networks:
 - e.g. "nearest neighbor" ideas for local dependence
 - \Rightarrow Baddeley and Moller (1989)
 - \Rightarrow Snijders, Robins, Pattison, Handcock (2006)
- Taking into account class membership is very important

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ◆□ ● ◆○へ

- known classes "block models"
 - \Rightarrow Wang and Wong (1987)

- latent class and trait models are important
 - an underlying latent "social space" of actors
 - \Rightarrow Hoff, Raftery and Handcock (2002)
 - \Rightarrow Hoff (2003, 2004 ,...)
 - latent class models are very promising
 - \Rightarrow Nowicki and Snijders (2001)
 - latent class and trait models

 \Rightarrow Handcock, Raftery, Tantrum (2007); Krivitsky et. al (2007)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ◆□ ● ◆○へ

 \Rightarrow Hoff (2005, 2007)

- grade of membership models
 - \Rightarrow Airoldi, Blei, Feinberg (2007)