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Network modeling from a statistical perspective

Networks are widely used to represent data on relations between
interacting actors or nodes.

The study of social networks is multi-disciplinary

plethora of terminologies
varied objectives, multitude of frameworks

Understanding the structure of social relations has been
the focus of the social sciences

social structure: a system of social relations tying distinct social
entities to one another
Interest in understanding how social structure form and evolve

Attempt to represent the structure in social relations via networks

the data is conceptualized as a realization of a network model

The data are of at least three forms:

individual-level information on the social entities
relational data on pairs of entities
population-level data
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Deep literatures available

Social networks community (Heider 1946; Frank 1972; Holland and Leinhardt 1981)

Statistical Networks Community (Frank and Strauss 1986; Snijders 1997)

Spatial Statistics Community (Besag 1974)

Statistical Exponential Family Theory (Barndorff-Nielsen 1978)

Graphical Modeling Community (Lauritzen and Spiegelhalter 1988, . . . )

Machine Learning Community (Jordan, Jensen, Xing, .... . . )

Physics and Applied Math (Newman, Watts, . . . )
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Example of Social Relationships between Monks
Expressed “liking” between 18 monks within an isolated monastery
⇒ Sampson (1969)

A directed relationship aggregated over a 12 month period before the
breakup of the cloister.
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Example of Social Relationships between Monks
Expressed “liking” between 18 monks within an isolated monastery
⇒ Sampson (1969)

A directed relationship aggregated over a 12 month period before the
breakup of the cloister.

Sampson identified three groups plus:
(T)urks, (L)oyal Opposition, (O)utcasts and (W)averers
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Examples of Friendship Relationships

The National Longitudinal Study of Adolescent Health
⇒ www.cpc.unc.edu/projects/addhealth

– “Add Health” is a school-based study of the health-related
behaviors of adolescents in grades 7 to 12.

Each nominated up to 5 boys and 5 girls as their friends

160 schools: Smallest has 69 adolescents in grades 7–12
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White (non-Hispanic)Grade 7
Black (non-Hispanic)
Hispanic (of any race)
Asian / Native Am / Other (non-Hispanic)
Race NA

Grade 8
Grade 9
Grade 10
Grade 11
Grade 12
Grade NA



Features of Many Social Networks

Mutuality of ties

Individual heterogeneity in the propensity to form ties

Homophily by actor attributes
⇒ Lazarsfeld and Merton, 1954; Freeman, 1996; McPherson et al., 2001

higher propensity to form ties between actors with similar attributes
e.g., age, gender, geography, major, social-economic status
attributes may be observed or unobserved

Transitivity of relationships

friends of friends have a higher propensity to be friends

Balance of relationships ⇒ Heider (1946)

people feel comfortable if they agree with others whom they like

Context is important ⇒ Simmel (1908)

triad, not the dyad, is the fundamental social unit
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The Choice of Models depends on the objectives

Primary interest in the nature of relationships:

– How the behavior of individuals depends on their
location in the social network

– How the qualities of the individuals influence the
social structure

Secondary interest is in how network structure influences
processes that develop over a network

– spread of HIV and other STDs
– diffusion of technical innovations
– spread of computer viruses

Tertiary interest in the effect of interventions on
network structure and processes that develop over a network
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Perspectives to keep in mind

Network-specific versus Population-process

– Network-specific: interest focuses only on the actual network
under study

– Population-process: the network is part of a population
of networks and the latter is the focus of interest

- the network is conceptualized as a realization of a social
process



Statistical Models for Social Networks

Notation
A social network is defined as a set of n social “actors” and a social
relationship between each pair of actors.

Yij =

{
1 relationship from actor i to actor j

0 otherwise

call Y ≡ [Yij ]n×n a sociomatrix

a N = n(n − 1) binary array

The basic problem of stochastic modeling is to specify a distribution
for Y i.e., P(Y = y)
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A Framework for Network Modeling

Let Y be the sample space of Y e.g. {0, 1}N
Any model-class for the multivariate distribution of Y
can be parametrized in the form:

Pη(Y = y) =
exp{η·g(y)}
κ(η,Y)

y ∈ Y

Besag (1974), Frank and Strauss (1986)

η ∈ Λ ⊂ Rq q-vector of parameters

g(y) q-vector of network statistics.
⇒ g(Y ) are jointly sufficient for the model

For a “saturated” model-class q = 2|Y| − 1

κ(η,Y) distribution normalizing constant

κ(η,Y) =
∑
y∈Y

exp{η·g(y)}



Simple model-classes for social networks

Homogeneous Bernoulli graph (Rényi-Erdős model)

Yij are independent and equally likely
with log-odds η = logit[Pη(Yij = 1)]

Pη(Y = y) =
eη

P
i,j yij

κ(η,Y)
y ∈ Y

where q = 1, g(y) =
∑

i,j yij , κ(η,Y) = [1 + exp(η)]N

homogeneity means it is unlikely to be proposed as a model for real
phenomena



Dyad-independence models with attributes

Yij are independent but depend on dyadic covariates xk,ij

Pη(Y = y) =
e

Pq
k=1 ηkgk (y)

κ(η,Y)
y ∈ Y

gk(y) =
∑
i,j

xk,ijyij , k = 1, . . . , q

κ(η,Y) =
∏
i,j

[1 + exp(

q∑
k=1

ηkxk,ij)]

Of course,
logit[Pη(Yij = 1)] =

∑
k

ηkxk,ij
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Some history of exponential family models for social
networks

Holland and Leinhardt (1981) proposed a general dyad independence
model

– Also an homogeneous version they refer to as the “p1” model

Pη(Y = y) =
exp{ρ

∑
i<j yijyji + φy++ +

∑
i αiyi+ +

∑
j βjy+j}

κ(ρ, α, β, φ)

where η = (ρ, α, β, φ).

– φ controls the expected number of edges
– ρ represent the expected tendency toward reciprocation
– αi productivity of node i ; βj attractiveness of node j

Much related work and generalizations



Some history of exponential family models for social
networks

Holland and Leinhardt (1981) proposed a general dyad independence
model

– Also an homogeneous version they refer to as the “p1” model

Pη(Y = y) =
exp{ρ

∑
i<j yijyji + φy++ +

∑
i αiyi+ +

∑
j βjy+j}

κ(ρ, α, β, φ)

where η = (ρ, α, β, φ).

– φ controls the expected number of edges
– ρ represent the expected tendency toward reciprocation
– αi productivity of node i ; βj attractiveness of node j

Much related work and generalizations



Classes of statistics used for modeling

Actor Markov statistics

⇒ Frank and Strauss (1986)

– motivated by notions of “symmetry” and “homogeneity”

– Yij in Y that do not share an actor are
conditionally independent given the rest of the network

⇒ analogous to nearest neighbor ideas in spatial statistics

Degree distribution: dk(y) = proportion of actors of degree k in y .
k-star distribution: sk(y) = proportion of k-stars in the graph y .
(In particular,
s1 = proportion of edges that exist between pairs of actors.)
triangles:
t1(y) = proportion of triads that from a complete sub-graph in y .

← →8

Classes of statistics used for modeling

1) Nodal Markov statistics ⇒ Frank and Strauss (1986)

– motivated by notions of “symmetry” and “homogeneity”
– edges in Y that do not share an actor are

conditionally independent given the rest of the network
⇒ analogous to nearest neighbor ideas in spatial statistics

• Degree distribution: dk(y) = proportion of nodes of degree k in y.

• k-star distribution: sk(y) = proportion of k-stars in the graph y.

• triangles: t1(y) = proportion of triangles in the graph y.
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⇐ Mark S. Handcock Statistical Modeling With ERGM →

Figure: Some configurations for non-directed graphs
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⇒ analogous to nearest neighbor ideas in spatial statistics

Degree distribution: dk(y) = proportion of actors of degree k in y .
k-star distribution: sk(y) = proportion of k-stars in the graph y .
(In particular,
s1 = proportion of edges that exist between pairs of actors.)

triangles:
t1(y) = proportion of triads that from a complete sub-graph in y .

← →8
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Other statistics motivated by conditional independence

⇒ Pattison and Robins (2002), Butts (2005)
⇒ Snijders, Pattison, Robins and Handcock (2004)

– Yuj and Yiv in Y are conditionally

independent given the rest of the network
if they could not produce a cycle in the network

New specifications for ERGMs
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Figure 2: Partial conditional dependence when four-cycle is created

(see Figure 2). This partial conditional independence assumption states that
two possible edges with four distinct nodes are conditionally dependent when-
ever their existence in the graph would create a four-cycle. One substantive
interpretation is that the possibility of a four-cycle establishes the structural
basis for a “social setting” among four individuals (Pattison and Robins,
2002), and that the probability of a dyadic tie between two nodes (here, i
and v) is affected not just by the other ties of these nodes but also by other
ties within such a social setting, even if they do not directly involve i and v.

A four-cycle assumption is a natural extension of modeling based on tri-
angles (three-cycles), and was first used by Lazega and Pattison (1999) in
an examination of whether such larger cycles could be observed in an empir-
ical setting to a greater extent than could be accounted for by parameters
for configurations involving at most 3 nodes. Let us consider the four-cycle
assumption alongside the Markov dependence. Under the Markov assump-
tion, Yiv is conditionally dependent on each of Yiu, Yuv, Yij and Yjv, because
these edge indicators share a node. So if yiu = yjv = 1 (the precondition in
the four-cycle partial conditional dependence), then all five of these possible
edges can be mutually dependent, and hence the exponential model (4) could
contain a parameter corresponding to the count of such configurations. We
term this configuration, given by

yiv = yiu = yij = yuv = yjv = 1 ,

a two-triangle (see Figure 3). It represents the edge yij = 1 as part of the
triadic setting yij = yiv = yjv = 1 as well as the setting yij = yiu = yju = 1.

Motivated by this approach, we introduce here a generalization of triadic
structures in the form of graph configurations that we term k-triangles. For
a non-directed graph, a k-triangle with base (i, j) is defined by the presence
of a base edge i − j together with the presence of at least k other nodes
adjacent to both i and j. We denote a ‘side’ of a k-triangle as any edge that
is not the base. The integer k is called the order of the k-triangle Thus a
k-triangle is a combination of k individual triangles, each sharing the same
edge i− j. The concept of a k-triangle can be seen as a triadic analogue of a

15
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This produces statistics of the form:

edgewise shared partner distribution: espk(y) =
proportion of edges between actors with exactly k shared partners

k = 0, 1, . . .

← →9

2) Other conditional independence statistics

⇒ Pattison and Robins (2002), Butts (2005)

⇒ Snijders, Pattison, Robins and Handcock (2004)

– edges in Y that are not tied are conditionally

independent given the rest of the network

• k-triangle distribution: tk(y) = proportion of k-triangles in the graph y.

• edgewise shared partner distribution:

pk(y) = propotion of nodes with exactly k edgewise shared partners in y.
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k-triangle for k = 5, i.e., 5-triangle

⇐ Mark S. Handcock Statistical Modeling With ERGM →

Figure: The actors in the non-directed (i , j) edge have 5 shared partners

dyadwise shared partner distribution:
dspk(y) = proportion of dyads with exactly k shared partners

k = 0, 1, . . .



Structural Signatures

– identify social constructs or features
– based on intuitive notions or partial appeal to substantive theory

Clusters of edges are often transitive:
Recall t1(y) is the proportion of triangles amongst triads

t1(y) =
1(
g
3

) ∑
{i,j,k}∈(g

3)

yijyikyjk

A closely related quantity is the
proportion of triangles amongst 2-stars

C (y) =
3×t1(y)

s2(y)

Also called mean clustering coefficient
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Example: A simple model-class with transitivity

n = 50 actors N = 1225 pairs 10369 graphs

P(Y = y) =
exp{η1E (y) + η2C (y)}

κ(η1, η2)
y ∈ Y

where

E (x) is the density of edges (0 – 1)
C (x) is the triangle percent (0 – 100)

If we set the density of the graph to have about 50 edges then the
expected triangle percent is 3.8%

Suppose we set the triangle percent large to reflect transitivity in the
graph: 38%



How can we tell if the model is useful?

Does this model capture transitivity and density in a flexible way?

By construction, on average, graphs from this model have average
density 4% and average triangle percent 38%

If the model is a good representation of transitivity and density we
expect the graphs drawn from the model to be close to these values.

What do graphs produced by this model look like?
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Curved Exponential Family Models

Suppose that η is modeled as a function of a lower dimensional
parameter: θ ∈ Rp

P(Y = y) =
exp{η(θ)·g(y)}

κ(θ,Y)
y ∈ Y

Hunter and Handcock (2004)

Suppose we focus on a model for network degree distribution and
clustering

log [Pθ(Y = y)] = η(φ) · d(y) + νC (y)− log c(φ, ν,Y), (1)

where d(x) = {d1(x), . . . , dn−1(x)} are the network degree distribution
counts.
Any degree distribution can be specified by n − 1 or less independent
parameters.
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Statistical Inference for η

Base inference on the loglikelihood function,

`(η) = η·g(yobs)− log κ(η)

κ(η) =
∑

all possible

graphs z

exp{η·g(z)}



Mean-value representation of the model

Let Pν(K = k) be the PMF of K , the number of ties that a randomly
chosen node in the network has.
An alternative parameterization: (φ, ρ) where the mapping is:

ρ = Eφ,ρ [C (X )] =
∑
y∈Y

C (y) exp [η(φ) · d(y) + νC (y)] ≥ 0 (2)

Pν(K = k) = Eφ,ρ [dk(Y )] k = 0, . . . , n − 1 (3)

– ρ is the mean clustering coefficient over networks in Y.
– ν controls the parametrization of the degree distribution



Illustrations of good models within this model-class

village-level structure

– n = 50
– mean clustering coefficient = 15% – degree distribution: Yule with
scaling exponent 3.

larger-level structure

– n = 1000
– mean clustering coefficient = 15% – degree distribution: Yule with
scaling exponent 3.

Attribute mixing

– Two-sex populations
– mean clustering coefficient = 15% – degree distribution: Yule with
scaling exponent 3.
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Application to a Protein-Protein Interaction Network

By interact is meant that two amino acid chains were experimentally
identified to bind to each other.

The network is for E. Coli and is drawn from the “Database of
Interacting Proteins (DIP)” http://dip.doe-mbi.ucla.edu

For simplicity we focus on proteins that interact with themselves and
have at least one other interaction
– 108 proteins and 94 interactions.



Figure: A protein - protein interaction network for E. Coli. The nodes
represent proteins and the ties indicate that the two proteins are known to
interact with each other.



Statistical Inference and Simulation

Simulate using a Metropolis-Hastings algorithm (Handcock 2002).

Here base inference on the likelihood function

For computational reasons, approximate the likelihood via Markov
Chain Monte Carlo (MCMC)

Use maximum likelihood estimates (Geyer and Thompson 1992)

Parameter est. s.e.
Scaling decay rate (φ) 3.034 0.3108
Correlation Coefficient (ν) 1.176 0.1457

Table: MCMC maximum likelihood parameter estimates for the protein-protein
interaction network.



Approximating the loglikelihood

Suppose Y1,Y2, . . . ,Ym
i.i.d.∼ Pη0 (Y = y) for some η0.

Using the LOLN, the difference in log-likelihoods is

`(η)− `(η0) = log
κ(η0)

κ(η)

= log Eη0 (exp {(η0 − η)·g(Y )})

≈ log
1

M

M∑
i=1

exp {(η0 − η)·(g(Yi )− g(yobs))}

≡ ˜̀(η)− ˜̀(η0).

Simulate Y1,Y2, . . . ,Ym using a MCMC (Metropolis-Hastings)
algorithm ⇒ Handcock (2002).

Approximate the MLE η̂ = argmaxη{˜̀(η)− ˜̀(η0)} (MC-MLE)
⇒ Geyer and Thompson (1992)
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Modeling Network Dynamics

Suppose we wish to represent the dynamics at t = 0, 1, . . . ,T time
points

Yijt =

{
1 relationship from actor i to actor j at time t

0 otherwise

Need a model that

– has the correct cross-sectional statistics
– has the correct durations for relationships
– realistic dissolution and formation of relationships
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0 otherwise

Need a model that

– has the correct cross-sectional statistics
– has the correct durations for relationships
– realistic dissolution and formation of relationships



A Naive Model for Longitudinal Network Data

Consider a dynamic variant of the cross-sectional ERGM:

Pη(Yt+1 = yt+1|Yt = yt) =
exp

(
ηt+1·g

(
yt+1); yt

))∑
s∈Y exp (ηt+1·g (x ; yt))

t = 2, . . . ,T

where gk(yt+1; yt) are statistics formed from yt+1 given yt

– Robins and Pattison (2000) Discrete temporal ERGM
– Morris and Handcock (2001) Discrete temporal ERGM
– Hanneke and Xing (2006) Discrete temporal ERGM
– Guo, Hanneke, Fu and Xing (2007)] Hidden temporal ERGM



Two-Phase Dynamic Model

Consider a Markovian model with transition probabilities from Yt to Yt+1

governed by simultaneous
dissolution and formation

phases



Formation Phase

Pr(Y+ = y+|Y0 = y0;β) =
eβ·g+(y+,y0)1y+⊇y0

c+(β, y0)
, y+ ∈ Y

Y0 −→ Y+

β completely controls the incidence



Dissolution Phase

Pr(Y− = y−|Y0 = y0; γ) =
eγ·g−(y−,y0)1y−⊆y0

c−(γ, y0)
, y− ∈ Y

Y0 −→ Y−

γ complete controls the durations of partnerships



Simultaneous Formation and Dissolution



Simultaneous Formation and Dissolution
Transition Probability

Pr(Y1 = y1|Y0 = y0;β, γ) = p−(y1 ∩ y0|y0; γ)× p+(y1 ∪ y0|y0;β)



Markov Process

Y0→ Y1→ Y2→ Y3→ . . .



Equilibrium Distribution

Yt
D→ Y ∼ Pr(Y = y ; β, γ)



Back to Prevalence

Prevalence = Incidence × Duration
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Back to Prevalence

Prevalence = Incidence × Duration
|| || ||

Equilibrium Formation Dissolution



Application to the Dynamics of HIV Spread

Data: The National Longitudinal Study of Adolescent Health

– Wave III (with retrospective duration information)
– Take into account age, sex, race (white/non-white)

and age-sex “mixing” patterns

Estimate the parameters of the model based on the likelihood.

Consider a (quasi)population of 10000 people (about half men and
women)

Simulate dynamics of sexual networks over 10 years

– the time step is daily (3650 steps)

Simulate disease spread based on 10 “seeds” (2 non-white)

– as daily have good control over micro-structure of transmission

Visualize only those that become infected
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Conclusions and Challenges

Network models are a very constructive way to represent (social)
theory

Some seemingly simple models are not so.

Large and deep literatures exist are often ignored

Simple models are being used to capture structural properties

The inclusion of attributes is very important

– actor attributes
– dyad attributes e.g. homophily, race, location
– structural terms e.g. transitive homophily

Software: A suite of R packages to implement this is available:
statnetproject.org

See the papers at:statnetproject.org/users guide.shtml
To appear as a special Issue of the Journal of Statistical Software,
Volume 24.


