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A Statistician’s Apology

* Lots of researchers do “network analysis.”

— Some approaches are generative; some merely
descriptive.

— Some insights based for actual networks are truly
innovative.

— Many ideas and methods are regularly reinvented.

* Today I’ll give a broad outline for a systematic
approach to dynamic network problems rooted
in my statistical perspective:

— Many pieces exist in work of others.

— Many of challenges are relevant to other systematic
approaches.



Networks — Is Easy

N
<P
S
=
~
&~
© pi
=8
>
~
~
<P
S
=¥

ing
izing

Mak
isual

Vv







9/11 Terrorists

M Flight AA #11 - Crashed into WTC North
B Flight UA #175 - Crashed into WTC South
W Flight UA #93 - Crashed in Pennsylvania

B Flight AA #77 - Crashed into Pentagon

. Others



Lots of Probabilistic/Statistical

Models

* Types of models:
— Descriptive vs. Generative.
— Static vs. Dynamic.

* Origin of social network models in 1930s,
integrated with graph representation in 1950s.

* Erdos-Renyi random graph models.
— Generalized random graph models.
— Stochastic process reinterpretations.

* Sociometric models such as p;, and ERGMs.

 Machine learning / latent-variable models:
— Stochasitic block models for mixed membership.



Applications Galore

 Small world studies  Public health

 Social networks: — Needle sharing
— Sampson’s monks — Spread of AIDS
— Classroom friendship — Obesity
— My Space, Facebook ¢ Computer science:
« Organization theory — Email networks (Enron)
— Branch banks — Internet

— WWW routing systems
* Biology:

 Homeland security

* Politics . o |
— Voting behavior — Protein-protein interactions
— Zebras

— Bill co-sponsorship 7



Oodles of Data

* Networks with multiple relationships,
and multiple attributes/covariates at each
node.

 Dynamicsof¢ddeftink) and node
creation and disappearance.
P38 Dynamic Network Evolution




But Doing Careful Statistical

Analysis is Difficult

e Claims for network behavior are often
based on casual empiricism:

— Power laws are everywhere, yet nowhere
once we look closely at the data.

* Inferential issues usually buried:

— Algorithms, simulations, and “experiments”
are not substitutes for formal statistical
representation and theory.



Framework for Networks

Evolving over Time

* Our representation for a network will be a
graph: G={/NsE }.
— Nodes and edges can be created and can die.
— Edges can be directed or undirected.
— Data are available to be observed beginning at time
L.
 There exists stochastic process, evolving over
time which, combined with initial conditions,
describes the network structure and evolution.
— May involve more than dyadic relationships.
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Markovity, Heterogeneity &

Non-stationarity

Continuous time Markov process.

Model intensity matrix: ¢ (X,X)
P(X(t+e)=x1X(t)=x)=¢eq(x,x) if x = X.
— “Rate” parameters may vary across nodes and time.

Model may depend on “characteristics” of the

nodes (attributes) as well as “characteristics” of
their connections.
— Fixed or time-varying.
— Characteristics may be concomitants or they may be
outcomes.

Stationarity vs. non-stationarity? .



Forms of Network Data

1. Observe formation (or removal) of each edge
with a time stamp indicating when this occurs.

e (Can see how entire network or subnetwork
changes with each transaction.
2. Observe status of network or sub-network at
T epochs.

* Represent snapshots of network and correspond to
information on incidence of links and information
on relationships.

3. Observe the cumulative effect of the stochastic
process at one or more time points.

* “Prevalence” approach.
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Example 1: Enron E-mail

Database

Attributes nodes (including organization
chart!) and full text on all e-mail messages.

Multiple addressees and cc’s. Thus
observations produce structure different from
dyadic edges.

Messages contain time stamps, so we are in
situation 3.

Question: Who was party to fraudulent
transactions and when?
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Example 2: Monks in a

Monastery (Airoldi, et al.)

* 18 noviates observed over two years.

— Network data gather a 4 time points;
friendship relationship among noviates
measured at 3 successive times.
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Dynamic Mixed Membership

Stochastic Blockmodel

e Data:
X,(nm) nm=1,2,..,.N=18;t=1,2,3.
e Combine MMSB for observed relations

with a simple state-space model for
evolution of latent aspects:

P(7,(n)10) ~ f oGaussian(0,A)

P(7,(n)\7%, (n),0)~ f o[Gaussian(0,A) + f" o7, ,(n)]
P(X,(n,m)I1I1,,0)~ Bernoulli(0) ~ (x,(n)'Bx,(m))
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Example 3: The Framingham

“Obesity” Study

e Original Framingham “sample” cohort with
offspring cohort of N,=5124 individuals
measured beginning in 1971 for 7=7 epochs
centered at 1971,1981, 1985, 1989, 1992, 1997,
1999.

 Link information on family members and one
“close friend.” Total number of individuals on
whom we have obesity measures is /N=12,067.

 NEJM, July 2007.
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Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.
Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social
network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle
is proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status:
yellow denotes an obese person (body-mass index, =30) and green denotes a nonobese person. The colors of the
ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange
denotes a familial tie.
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Obesity Statistical Issues

 Sampling?
* What is a cluster? How do they arise in
context of dynamic models?

 Embeddabilty?
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Fig. 3a-b Observed networks for a Grevy's zebra (28 individu-
als) and b Onagers (29 individuals). Individuals are vertices, with
reproductive status indicated by shape: males (squares), lactating
females (circles), and nonlactating females (triangles). Thin gray
lines join individuals observed together at least once (nonzero
network). Thick black lines represent statistically significant asso-
ciations (preferred network)




Dynamical = |1
Representation : =8,
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| |

* What is the stochastic Emn s o
model for group m :

=
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formation and change?

=

* Groups of females and
shifting males who are
mating?




Example 5: Links on the Web
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Challenging Classes of Problems

* Data integration.

 Computability.

* Asymptotics (Assessing goodness of fit).
* Sampling.

 Embeddability.

* Prediction.

* Privacy/Confidentiality.



Data Integration

* Data arising from multiple sources, with
uncertainty associated with node
identification.

— Record linkage (De-duping); entity
resolution.

 How do we link this problem to
estimation of dynamical models?
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Computability

* Algorithms that scale:

— R package on exponential random graph

models and latent models for networks:
http://csde.washington.edu/statnet/index.shtml

— Siena package from Tom Snidjers.
* Approximations:
— Variational methods.

* Bayes vs. frequentist.
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Inference and Asymptotics

* n nodes, /V edges (links) and r relations, p
attributes on nodes, etc.
— Analogy with Rasch model?

 What is unit of statistical analysis?
— Nodes, dyads, larger groups. etc.
* Elaborate models but little knowledge of how

they fit the data, especially dynamically. This
is why we need asymptotics.

— Some work by Handcock and colleagues
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ERGMs and Identification

 Some ERGMs are not hierarchical and
this means interpretation is problematic;
also get strange degeneracies.

* Evaluating ERGM likelihoods:

number nodes number of edges number of graphs
-~ ‘ 2 i ~ ‘
i 21 221 = 2,007, 152

8 28 228 — 268, 435, 456
9 36 236 — 68,719,476, 736
10 45 2% = 35,184,372, 088,832




ERGM

A p* model is a probabillity model defined on a directed or undirected graph
whose density takes an exponential form like

])(;1'}) X eXp{(')E(;'l.') -+ ()'252(;1') + 0353 (;I') -+ TT(I)}

The sufficient statistics E(x), Sy(x), S3(z) and T'(x) usually reflect the local
configurative patterns in the graph, for example, number of edge, number of
2-star, number of 3-stars and number of triangles|

* When effects associated with stars are
zero, we often get near-degenerate
behavior.
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Entropies for 9-nodes

Enfropies of ERGIMs on edges and triangles for 9-node graph

Entropies of ERGMs on edges and triangles for 9-node graph

< triangle parameter

¢ - - - 2 a ?
-3 10 o edge parameter

1. tnangle parameter
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Entropies for 9-Nodes (Means)
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Sampling

 What to sample and how?
— Nodes, edges, relations?

— Adaptive sampling designs, link trace
sampling, snowball sampling.

 Framingham design?
* Does sampling effect ability to
generalize?

— Design-based inference vs. model-based
inference.

— Work of Stumpf and colleagues.
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Embeddability

 Want dynamic network models are explicitly or
implicitly expressible in terms of stochastic
processes.

* Suppose we collect data at 7 epochs as in
Framingham study.

 Can we estimate parameters of models from
observed data?

 What might be role of discrete time Markov
chain approach for ERGM of Hanneke and
Xing?
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Snijders’ Approach

* Stochastic model leads to set of observed
network characteristics:
— Simulation models to get at intensity matrices.
— Approximate ERGMs and their transitions.
— Likelihood methods still in infancy.

* Looking at degree distributions is not even
close to an approximation.

* Degeneracy problems similar to those for
ERGMs arise, especially for cross-sectional
data.
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* For dynamic network settings, and data
generated over time there are a series of
forecasting problems.

« How should we evaluate alternative
predictions from different models?
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Privacy Protection &

Facebook Fiasco

 Facebook and other networking sites do little to
protect privacy.

* Is protect privacy in social network settings an
oxymoron?

— “Wherefore art thou r3579x?: Anonymized social
networks, hidden patterns, and structural
steganography,” Backstrom, Dwork, Kleinberg

* Do anonymized attributes and links reveal all?
If not can we have our cake and eat it too, i.e.,
protect individuals (nodes) but reveal
structure?
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* Stochastic model perspective for dynamic
networks.
* Links to existing approaches:

— ERGM.
— Statistical physics models.

— MMSBM.
* Challenging statistical issues.
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Thanks

Collaborators:
— A. Rinaldo and Yi Zhou (p* plots)

— Edo Airoldi and David Krackardt (longitudinal
Monk model and analyses)

— David Blei, Lise Getoor, Anna Goldenberg, Eric
Xing, Alice Zheng
Mark Hancock and Tom Snijders

Stan Wasserman for introducing me to these
problems 30 years ago; doing the first
continuous time Markov models.
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