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1 Introduction
Complex macro-social phenomena can arise from sim-
ple micro-level behavior without any global coordination
(e.g. racial segregation in neighborhoods can occur sim-
ply from individuals wanting to avoid being in the minor-
ity even in a population that prefers diversity [6]). Such
simple local rules and assumptions are only rarely empir-
ically grounded because they require studying a given so-
cial system at an individual scale and at a spatial and tem-
poral resolution not possible using manual non-automated
techniques. As a result, few studies have attempted to an-
alyze social interactions that involve micro-level behav-
ior. We are interested in grounding simple behavioral as-
sumptions with real observations, and in testing the effects
of these behaviors at the macro-level dynamics of groups
and larger social systems. To this end, we instrumented
a subject population with wearable sensors that recorded
them as they went about their lives over the course of 9
months. We believe this longitudinal dataset will offer
fertile opportunities to explore the type of questions de-
scribed above. By continuously studying individuals in
a social system, our goal is to discover the simple rules
people follow or the behaviors they exhibit and how these
affect the structure and dynamics of social networks. For
example, is the interaction likelihood of two people pro-
portional to their physical proximity, or instead to the
stylistic similarity of their conversational dynamics [1] or
body language? How predictive are the social network
topologies that will emerge?

2 The Dataset
We recruited 24 subjects from the incoming class of the
graduate program of a single department at a large re-
search university. To collect data, each subject wore
an HP iPAQ Personal Digital Assistant (PDA) with an
attached multi-sensor board (MSB) containing 8 differ-
ent sensors. The MSB was worn on the front of the
wearer’s shoulder, similar in placement to a lapel mi-
crophone (see 1)–for long-term usability, a close-talking
microphone was not appropriate. Of the 8 sensors, the
microphone is clearly the most important sensor for con-

versation detection. In our earlier [9, 8] work we devel-
oped algorithms to automatically segment multi-person
conversations from the streaming sensor data and segment
speakers within those conversations. From the segmented
conversations, a variety of attributes about the conversa-
tional dynamics (which maybe be indicative of the net-
work dynamics) can be computed, such as turn-taking,
duration of voiced segments, pauses, speaking rate, mean
and variance of pitch, mean and variance of the signal am-
plitude, duration of conversation, etc.

The MSB also contains 7 other sensors that sample
at varying rates: triaxial accelerometer (550 Hz), visible
light (550 Hz), digital compass (30 Hz), temperature and
barometric pressure (15 Hz), infrared light (5 Hz), and
humidity (2 Hz). These sensors can be used to infer the
wearer’s physical activity (e.g. walking, sitting, standing)
and whether she is indoors or outdoors [5]. In addition
to the data gathered via the MSB, the PDA records (at
0.5 Hz) the MAC addresses and signal strengths of the 32
strongest WiFi access points nearby. This WiFi data can
be used to determine the wearer’s location [4]. Data was
collected during working hours for one week each month
over the 9 month course of an academic year. At the end
of every collection week each subject filled out a survey.
The survey asked questions about: which other partici-
pants the subject interacted with and how (e.g. home-
work collaboration, research collaboration, socially, etc.),
which sub-areas of the discipline the subject was inter-
ested in pursuing, which faculty members the subject had
collaborated with, etc. Once each term, the survey also
asked which classes the subject was taking, how she was
funded, and whom she considered her advisor.

3 The Model

Given the sensor data, our goal is to infer the underly-
ing static network structure (and ultimately the underlying
temporal dynamics). We generalize the standard exponen-
tial random graph model [2, 7] to handle missing informa-
tion that is specific to our dataset but is likely to be com-
mon in other multi-person sensor streams as well. First,
we do not directly measure social ties–we only observe
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information about the duration that pairs of individuals
spend in conversation over time window samples. Sec-
ond, the time windows are not always fully observed –
thus, the true proportion of time spent together convers-
ing is not entirely known.

In order to reliably learn network structure under such
missing information, we consider all edges as hidden
(similar to [3]) and represent observational uncertainty in
a Markov random field identically to the way virtual evi-
dence is used in Bayesian networks. Specifically, the de-
gree to which a portion of a given time window is missing
is proportional to the confidence we place on the obser-
vation encoding the relative amount of time a given pair
spends together in that window. Handling such missing
data through a combination of virtual evidence and hid-
den edges is a novel aspect of our ERGM model.
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Equation 1 is the likelihood for a traditional ERGM
where y represents the edges of the network, φ are fea-
tures of the network, θ are weights to be learned, and Z
is a normalizing term. Equation 2 is the likelihood for a
model where the edges are hidden and interact indirectly
via the observations x. Equation 3 is the likelihood for
our model: evidence is only partially observed via d and
a confidence function c weights values of x based on d.
This is equivalent to 4, a multi-layer undirected graphical
model where weights for fixed “virtual evidence features”
are untrained and clamped to 1.

Figure 1: The MSB–microphone is on the upper right.
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Figure 2: Average overlap in recording over all subjects. The
error bars show standard deviation. Thus, it is highly
likely that at any given time the data from some sub-
jects will be missing.

With synthetic data, we have had promising initial re-
sults reconstructing the hidden network as well as (to a
lesser degree) recovering the model parameters. We are
currently working on a feature set to be used with our
real-world conversation data. We will present results on
the conversation data at the workshop.
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