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1. Introduction

We apply Conditional Random Fields (CRFs) to territory
prediction in the game of Go. We propose a two-stage
graph reduction of the Go position, with the first stage used
for CRF parameter estimation and the second for infer-
ence. The interaction potentials in our model are calculated
from generic shape features; the associated parameters are
shared between semantically equivalent feature types. Our
experiments indicate that this architecture is very efficient
at propagating relevant information across the graph.

Go is a board game that originated in China over 4000
years ago. Two players (black and white) alternate in plac-
ing stones on the intersections of the grid. Once a stone is
placed it cannot be moved, but it can be removed (captured)
if all its empty neighbours (liberties) are occupied by op-
ponent stones. Neighboring stones of the same color form
a contiguousblock. Players aim to create blocks that can-
not be captured; the area these occupy counts as their final
territory. Territory prediction is thus an important subprob-
lem in Go: given a board position, determine which player
controlseach intersection.

2. Graph Abstraction for Go Positions

Grid graph. Go positions are most naturally represented as
graphs, suggesting the use of graphical models. The board
itself defines a square grid graphG whose intersections can
be in one of three states:black, white, orempty(Figure 1a).

Common fate graph. It is the properties of blocks, rather
than individual stones, that determines their fate: blocksal-
ways live or die as a unit. It is therefore inherently wasteful
to model the individual stones of a block asG does. Con-
sequently, thecommon fate graph Gf (Enzenberger, 1996;
Graepel et al., 2001) merges all black stones in a block into
a single node� and similarly all white stones into� (Fig-
ure 1b). Information such as the block’s size and shape can
be represented in the node’s features.

Block graph. Empty regions do not have the common fate
property, as they are usually divided up between the play-
ers; collapsing them as well results in too impoverished a
representation. Not collapsing them, on the other hand,
produces large, unwieldy graphs, especially early in the
game. Ourblock graph Gb is a compromise between these

two extremes. It is produced by collapsing empty intersec-
tions ofG f into black surround�, white surround� and
neutral⋄ depending on whether the Manhattan distance to
the nearest black stone is less than, equal to, or greater than
the distance to the nearest white stone (Figure 1c).

Gb provides a more succinct representation thanG f , yet
by classifying empty regions into three types preserves the
kind of information needed for predicting territory. For
instance, in Figure 1a stones 12 and 17 are dead because
they are surrounded by opponent’s territory (nodes 9, 13,
14 and 15) and have little room to make life (nodes 16 and
18). We note thatGb is planar since it is derived fromG,
which is planar by definition. This makesGb amenable to
exact polynomial-time parameter estimation (Globerson &
Jaakkola, 2007), a variant of which we employ.

Group graph. Blocks of one color that share the same sur-
round are very unlikely to becut into disjoint regions by the
opponent. Since such groups of blocks share the same fate,
we can group them together (dashed lines in Figure 1c). We
use the resultinggroup graph Gg for inference (i.e.,predic-
tion); for parameter estimation we preferGb because the
fate of the group, albeit shared, very much depends on the
shape features of its constituent blocks.

3. Features and Parameters

Nodes. For node features we adopt theneighbour classi-
fication of Vilà & Cazenave (2003): for each point com-
pute the number of adjacent points that are in the same re-
gion (Figure 1d top). A region’s shape feature is a vector
of length four whosekth element indicates the number of
points withk neighbours, all in the same region. Neigh-
bor classification provides a powerful way to summarize a
region’s shape, which is particularly important for empty
regions. Vilà & Cazenave (2003) showed that in Go, re-
gions with identical neighbour classification have identical
eye-forming potential.

Edges. We extend the above definition to edge features:
given two adjacent nodesv1, v2 ∈ Gb, for each point in
v1 compute the number of adjacent points that are inv2,
andvice versa(Figure 1d bottom). It is worth noting that
our edge features provide additional information that is not
conveyed by the features of the nodes they connect. This
contrasts with the common approach of making edge fea-
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Figure 1: (a) A typical 9×9 board position represented as a grid graphG. Dead stones are shaded; all other stones are alive.
(b) Corresponding common fate graphG f . (c) Corresponding block graphGb. � representstones, � representsurrounds,
and⋄ areneutral. Dashed lines indicate nodes of the group graphGg. (d) Top: Node features, resulting in feature vector [2,
4, 2, 1]. Bottom: Edge features, resulting in feature vectors [6, 3, 0] and [3, 3, 1] for edges�→ � and�→ �, respectively.

Table 1: Parameters and features used to compute the po-
tential of one particular edge (blue) in a small block graph
(bottom left).
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tures simply some arithmetic combination of the features
of their nodes.

Parameter sharing. There are three types of node parame-
ters, one for each node type:stone(θ�), surround(θ�), and
neutral (θ⋄); and eight types of edge parameters resulting
from all possible types of node pairings. To assist propa-
gation of Go knowledge along the graph, for each edge we
also include the features, weighted byθn of its neighbour-
ing nodes and edges. Table 1 shows the resulting features
and parameters for one particular edge.

4. Results

For our experiments we use 9× 9 endgame positions of
van der Werf et al. (2005). Each grid point is labeled as
either belonging to or . Note that we do not
predict on neutral points. We use the CRF’s MAP assign-
ment as our prediction. We use 4 measures for test error:
block— percentage of misclassifiedstonenodes inGb, ver-
tex— percentage of misclassifiednon-neutralnodes inG,

game— percentage of games that have at least one vertex
error andwinner— percentage of games whose winner is
predicted incorrectly using Chinese Scoring. The naive er-
rors are computed by assuming that all stones are alive,i.e.,
we label� as, and� as. Our system compares
favourably to other models (Table 2). Incorporating addi-
tional features and refining the division of empty regions
should lead to further improvements.

Table 2: Prediction error (% and standard deviation) of dif-
ferent models.

Error
Algorithm Block Vertex

Naive 17.57± 0.40 6.79± 0.09
Stern et al. (2004) 7.36± 0.27 4.77± 0.22

Block graph 3.56± 0.19 2.36± 0.06
Block graph+ nbr. edges 2.63± 0.17 1.70± 0.05

Algorithm Game Winner
Naive 75.70± 1.43 30.79± 1.53

Stern et al. (2004) 38.30± 1.62 13.80± 1.15
Block graph 13.02± 1.12 4.53± 0.69

Block graph+ nbr. edges 9.05± 0.95 2.87± 0.55
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