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1 Introduction

One of the most difficult challenges currently facing network analysis is the difficulty of
gathering complete network data. However, there are currently very few techniques for
working with incomplete network data. In particular, we would like to be able to observe a
partial sample of a network, and based on that sample, infer what the rest of the network
looks like. This task is quite challenging, and there have even been rumors that it is
technically impossible. In this abstract, we argue that this is not the case, though a strong
learning bias seems to be required.

In particular, we look at the network completion task, given access to random survey sam-
ples. By a random survey, we mean that we choose a vertex in the network uniformly at
random, and we are able to observe the edges that vertex is incident with. Thus, a random
survey reveals the local neighborhood (or ego network) of a single randomly selected vertex.
We assume the network is represented as an undirected graph, with n vertices, and that the
random samples are performed without replacement. Thus, after m random surveys, we can
observe all of the edges among the m surveyed vertices, along with any edges between those
m vertices and any of the n−m unsurveyed vertices. However, we can not observe the edges
that occur between any two unsurveyed vertices. Thus, there are precisely

(

n−m
2

)

vertex
pairs for which we do not know for sure whether they are adjacent or not. We measure the
performance of a network completion algorithm based on how well it predicts the existence
or nonexistence of edges between these pairs.

2 Agnostic Learning

In this setting, we have some learning bias, in the form of a distribution p(E) over edge con-
figurations in the graph. We then wish to upper bound, with high probability, the fraction of
mistakes among the pairs of unsurveyed vertices. This is analogous to the standard Occam
bounds from the learning theory literature. Let Γn be the set of all edge configurations; so

|Γn| = 2(n

2
). Also, let V = {1, 2, . . . , n} and let E∗ denote the edge configuration in the

true network. For any Ê ∈ Γn, E′ ∈ Γn, let T (Ê, E′) = |Ê △ E′|, where △ denotes the

symmetric difference. For any set S of m vertices, let T̂S(Ê, E′) = |(S × V ) ∩ (Ê △ E′)|.
Let E0 = ∅ denote the empty graph. Define

FT,n,m(t) = max
E:|E|=T

PrS{T̂S(E, E0) ≤ t},

where S ⊂ V is a set of size m selected uniformly at random. Now define

T
(m)
max(t, δ) = max{T |T ∈ Z, FT,n,m(t) ≥ δ},

where dependence on n is implicit for notational simplicity. Using these definitions, we have
the following bound on the number of mistaken predictions between unsurveyed vertices, as
a function of the number of observed mistakes.

Theorem 2.1. ∀δ ∈ (0, 1), PrS{∀Ê ∈ Γn, T (Ê, E∗) ≤ T
(m)
max(T̂S(Ê, E∗), δp(Ê))} ≥ 1 − δ.

For a somewhat more explicit (though looser) bound, we can use the observation that

FT,n,ℓ(t) ≤ e−x̃m/n,



where x̃ is the smallest nonnegative integer x satisfying

2(T − t) − t(n − x) ≤ x(x − 1) + (n − x)min{x, t}.

The proof of this (and some bounds of intermediate tightness) are available upon request.

For an example of how this bound behaves, suppose we choose a hypothesis network Ê that
is consistent with the observations. Then, for m < n/2, with probability 1− δ, the fraction

of pairs of unsurveyed vertices on which Ê is mistaken is at most
(

2
m ln 1

δp(Ê)

)2

.

3 Learning with a Block Model Assumption

We can also look at learning models with more assumptions, to ease learning. In this section,
we consider using survey samples as before, but this time every vertex i ∈ {1, 2, . . . , n}
belongs to a group gi ∈ G, where G is a finite set. We assume that the gi are unknown,
except for the m surveyed vertices. That is, for a random survey in this setting, we ask the
vertex which other vertices it is linked to and which group it is in.

Additionally, there is a known function f(·, ·) such that, for every i and j, f(i, j) ∈ {0, 1};
this will indicate the possibility for interaction between i and j (e.g., f could be a function
of known features of the vertices, such as geographic proximity). We make the further
assumption that for g, h ∈ G, there is a value pgh ∈ [0, 1], such that for any i and j, the
probability there is a link between i and j is precisely pgigj

f(i, j).

As before, our task is to predict which of the unknown vertices are linked, based on informa-
tion provided by m random surveys. We suggest the following strategy to get an estimate
p̂ij of the probability that i and j are linked.

Let Qgh be the set of pairs (i, j) of surveyed vertices having gi = g, gj = h, and f(i, j) = 1
Let p̂gh be the fraction of pairs in Qgh that are linked in the network
For each unsurveyed i, let Qig be the set of surveyed j having f(i, j) = 1 and gj = g

and let p̂ig be the fraction of vertices j ∈ Qig such that i and j are linked in the network
Let ĝi = arg ming∈G maxh∈G |p̂gh − p̂ih|

For each pair (i, j) of unsurveyed vertices, let p̂ij = p̂ĝiĝj
f(i, j)

After running this procedure, we must still decide how to predict the existence of a link
using the p̂ij values. The simplest strategy would be to predict an edge between pairs with
p̂ij ≥ 1/2. However, one problem for network completion algorithms is determining the
right loss function. Because most networks are quite sparse, using a simple “number of
mispredicted pairs” loss often results in the optimal strategy being “always say ‘no edge’.”
However, this isn’t always satisfactory. In many situations, we are willing to tolerate a
reasonable number of false discoveries in order to find a few correct discoveries of unknown
existing edges. So the need arises to trade off the probability of false discovery with the
probability of missed discovery. We can take this preference into account in our network
completion strategy as follows. Suppose we wish to constrain the false discovery probability
below ρ ∈ (0, 1). We can predict an edge between unsurveyed vertices i and j whenever
1 − p̂ij + β ≤ ρ, for β defined below.

Let δ ∈ (0, 1), f̄ = min
i,g

1
n−1

∑

j:gj=g

f(i, j), and m̄ = mf̄ −
√

2mf̄ ln 6n|G|
δ . The following the-

orem follows from simple bound arguments for Binomials. The proof can be made available
upon request.

Theorem 3.1. With probability ≥ 1 − δ, for all i, j ∈ {1, 2, . . . , n},

|p̂ij − pgigj
| ≤ 9

√

ln(12n|G|/δ)

2m̄
.

Thus, we can define β = 9
√

ln(12n|G|/δ)
2m̄ . This guarantees that, with probability 1 − δ, the

false discovery probability for an edge existence prediction is at most ρ. Furthermore, it
guarantees, with probability 1− δ, that the probability that there is a link between i and j
when we predict there is not one is at most f(i, j)pgigj

≤ f(i, j)(1 − ρ + 2β).


