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Abstract

Measurement of the AS graph is usually performed on
a subset on the subset of the AS graph that is cap-
tured with measurements. In this paper we describe
a method using AS graph measurements to derive a
family of possible AS graphs, each with a described
likelihood.1

1 Introduction

Even though it is entirely human made, we do not
know the topology of the Internet. Knowledge of this
topology would be useful for protocol designers, pol-
icymakers, and Internet Service Providers. Because
the Internet is an IP network, and IP networks are
built in layers, we must be very careful about ex-
actly which layer we are talking about at any given
time. At one level, the Internet is a connection of
independent networks (autonomous systems or ASs)
who have chosen to interconnect with each other and
carry each other’s traffic to provide mutual connec-
tivity. It is these agreements that make the Internet
an inter-network, and so we focus on this layer as our
object of study.

The AS graph is the layer of Internet topol-
ogy in which each independent network is modeled
as a single vertex, and a link from one vertex to
another means that there exists some contract be-
tween the two networks to directly exchange traf-
fic. These contracts take two forms: peering and
customer-provider. Peering links are where two au-
tonomous systems agree to exchange traffic as equals,
while customer-provider links imply one AS paying
another AS money to carry traffic and provide con-
nectivity. In the AS graph, we model links as di-
rectional from customer to provider — in effect, the
arrows “follow the money”. Peering links are there-
fore bidirectional, as no money changes hands. In the
valley-free model of Internet routing, introduced
by Gao in 2001[2], a packet’s route consists of going
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in the same direction as some number of edges (pos-
sibly zero), and then going against some number of
edges (again possibly zero). With this model of rout-
ing, we capture the idea that not all edges are useful
for all autonomous systems.

Traditional analyses of the AS graph have involved
downloading as many routing tables as possible (usu-
ally from RIPE[3] and Route Views[4], possibly from
other sources as well) and then collating all of them
into a single unified view that is assumed to be as
complete as possible. This is in direct conflict with
the fact that it is known that a significant number
of edges are missing from these views. In this paper
we outline a method of deriving possible and prob-
able AS graphs from the measured data. Using this
technique, it should be possible to derive, with mea-
sured certainty, measurements of the actual AS graph
instead of simply taking the bounded AS graph and
assuming it is complete. This is very important, be-
cause even simple graph measurement such as degree
distribution have been show to be non-representative
when a graph is sampled by shortest paths [1].

2 Proposed Pipeline

For a desired network statistic (any function whose
input is a graph and whose output is a single num-
ber), we propose to measure that statistic in the fol-
lowing way:

1. Create a combined list of shortest valley-free
paths from all available sources of routing data

2. Assign a direction to every edge using Gao’s
algorithm.[2]

3. Enumerate all edges which can not exist, be-
cause their existence would contradict our mea-
surements being shortest valley-free paths.

4. Repeatedly, until the desired level of precision is
reached, do the following:

(a) Sample from the set of graphs that contain
all measured edges and no impossible edges
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(b) Refine the sample until it is a sample with
high likelihood

(c) Measure the desired network statistic on
this sample graph

(d) Record both the value of the network statis-
tic and the likelihood of the graph that the
network statistic came from

5. Coalesce all measurements and likelihoods into
an expected value and standard deviation.

Once this process is complete, we should have a good
idea of what the value for a given network statistic
on the AS graph actually is instead of merely what
the network statistic of the measured subset of the
AS graph is. In this description of the pipeline, the
steps with the most hand-waving are steps 3 and 4b,
so we devote the rest of this abstract to discussing
them in more detail.

3 Impossible Edges

On a valley-free shortest path, for every pair of ver-
tices A and B on this path that are separated by at
least one vertex, one of the following situations must
apply: Either A→ . . .→ B, from which we conclude
that there can be no edge from A to B; A→ . . .← B,
which implies that there is no edge from A to B or
from B to A; or, finally, A← . . .← B, which implies
there is no edge from B to A. All of these conclusions
follow directly from the fact that the given path is a
shortest valley-free path, because if any of those edges
existed, there would exist a shorter valley-free path.

For a path of length k, this insight allows us to
mark O(k2) edges as impossible. If we perform this
algorithm on every single measured path, we can
enumerate all impossible edges. Thus, we randomly
choose a graph that is a supergraph of the union of
all measured edges, but is a subgraph of the complete
graph with all impossible edges removed. From this,
we can generate a possible graph. Unfortunately, for
graphs the size of the AS graph, there is an astronom-
ical number of possible graphs, and not all graphs
are equally likely to be the measured AS graph. This
brings us to our next technique, which uses ideas from
phylogenetic tree reconstruction in an effort to refine
our randomly chosen possible AS graph into a more
probable AS graph.

4 Refining the Sampled Graph

If we assume that our collection of measurement
points is representative, then we can assign a likeli-
hood to a possible AS graph by evaluating how likely

it is that the degree distribution of our measurement
points is a sample taken from the degree distribu-
tion of the possible AS graph. We can further refine
this likelihood by comparing not just degree distribu-
tion, but also average shortest valley-free path length
from our measurement points and other parameters.
The main insight is that, for our measurement points,
there are some aspects which we know completely.
One of these aspects is the degree of each measure-
ment point, and another is the valley-free distance
from the measurement point to every other vertex in
the graph.

Using those aspects which we know with certainty,
we can create a distribution of their values over our
sample set and a distribution of these values over the
candidate AS graph, and then use standard statistical
techniques to evaluate how likely it is that the sample
distribution came from the proposed AS graph’s dis-
tribution. Armed with this technique, we can then
use hill-climbing methods to alter our possible AS
graph into a more probable AS graph.

5 Summary

In this abstract we outline a proposed algorithm for
measuring the properties of the AS graph and for
gauging the uncertainty of our measurements. The
next step, which is in process, is to implement these
methods and to measure various aspects of the AS
graph. It is also hoped that these insights into dealing
with incompleteness in graph data can be useful in
other domains where graphs are sampled and only a
subgraph is known and we want to measure global
properties of the graph.

References

[1] D. Achlioptas, A. Clauset, D. Kempe, and
C. Moore. On the bias of traceroute sampling; or,
power-law degree distributions in regular graphs.
In Symposium on Theory of Computing, May
2005.

[2] L. Gao. On inferring autonomous system relation-
ships in the internet. IEEE/ACM Transactions
on Networking, 9(6):733–745, 2001.

[3] The RIPE Routing Information Services.
http://www.ris.ripe.net, 1999-.

[4] University of Oregon Route Views Project.
http://routeviews.org, 1997-present.

2


