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Figure 1: (a) An undirected graph. (b) A clique decomposition of (a). (c) 5 2-cliques, or 2 3-cliques.

An interesting analysis is to break an undirected graph, Fig.1a, into well-connected clusters of nodes, Fig.1b. Forming
such a ‘decomposition’ could be found by recursively identifying the largest clique in the graph1. Whilst such a ‘greedy’
recursive approach is feasible, it depends on finding maximal cliques, itself an NP-hard problem. Furthermore, this
requirement may be also be too strict since, provided that only a small number of links in an ‘almost clique’ are missing,
this may be considered a sufficiently well-connected group of nodes to cluster them.

Incidence and Clique Matrices

The incidence matrix Zinc describes the adjacency structure: For each link ij, form a column of Zinc with zeros except
for a 1 in the ith and jth row. The column ordering is arbitrary. For example, for Fig.1c

Zinc =







1 1 0 0 0

1 0 1 1 0

0 1 1 0 1

0 0 0 1 1






, Z =







1 0

1 1

1 1

0 1






(1)

The incidence matrix has the following remarkable property:

A = H
(

ZincZ
T

inc

)

(2)

where A is the adjacency matrix, including self-connections, and [H(M)]ij = 1 if Mij > 0 and is 0 otherwise (H(·) is
the element-wise Heaviside step function). One may view Zinc as a decomposition into two-cliques, since each column
contains only two entries. Another decomposition of Fig. 1c is into two (maximal) cliques (123), (234). The matrix Z

in Eq. (1) also satisfies A = H
(

ZZT
)

. We introduce the terminology clique matrix for Z since each column expresses
which nodes form a clique. (The incidence matrix is special case, namely a 2-clique matrix). The number of columns
of the clique matrix is the number of cliques, and each column describes the clique. To perform clustering, we would
like to find the smallest number of maximally-sized-cliques. That is, Z should have a small number of columns.

Constrained Relational Covariances

Clique matrices solve the following problem in Relational Machine Learning : Given an adjacency matrix A, find
a covariance matrix that contains zeros where A is zero. For example, in Fig.2a we show the Political Books links
(from Valdis Krebs). In recent works on Relational Learning (e.g. Silva, Chu, Ghahramani, NIPS 2007), a model of
covariances of these relations is required, with zero-covariance where A is zero. Since, by construction, A = H(ZZT),
then ZZT is a covariance matrix, with zeros where A has zeros. Hence, by forming U to be zero where Z is zero, and
choosing any values for the remaining elements, C = UUT is a covariance matrix. The incidence matrix is one way
to do this, but over-parameterised. A clique matrix offers a more parsimonious parameterisation2. The clique-matrix
formalism also provides a route to parameterising diffusion kernels (eg. Tsuda and Noble, Bioinformatics 20, 2004).

∗An early version of this work was presented at the 6th Slovenian International Conference on Graph Theory, Bled, 2007.
1Write V0 for the initial vertex set and C0 as the largest clique of the graph on V0. Then remove those nodes of the largest clique not

connected with the rest of the graph. More formally, recursively identify the largest clique on the remaining nodes Vi+1 ≡ Vi\
(

Ci\
(

Vi ∩ Ci
))

.
2Using β = 10, we found Z in Fig.2c which satisfies A = H(ZZT), solving the constraint. Bigger clusters can be found using a smaller

β, if desired. This would be at the expense of clusters not being fully-connected, and wouldn’t perfectly solve the constraint problem.
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Figure 2: (a) Adjacency matrix of 105 Political Books (black=1). (b) Incidence Matrix: 882 non-zero entries. (c) Clique
matrix: 521 non-zero entries. (d) Sampled Covariance, generated from (c) with constraints implied by (a) obeyed.

Finding Probabilistic Approximate Clique Decompositions

To find ‘well-connected’ clusters, we relax the problem so that the absence of links are viewed as statistical fluctuations
away from a perfect clique. Given a clique matrix Z, we desire that the higher the overlap between rows zi and zj is,
the greater the probability of a link between i and j. We express this using

p(i ∼ j|Z) = σ
(

ziz
T

j

)

, σ(x) ≡
1

1 + eβ(0.5−x)
(3)

where β controls the steepness of the function. Absent links contribute p(i 6∼ j|Z) = 1 − p(i ∼ j|Z). Under Eq. (3), if
zi and zj have at least one ‘1’ in the same position, ziz

T

j − 0.5 > 0 and p(i ∼ j) is high. Assuming each element of A is

sampled independently the likelihood is p(A|Z) =
∏

i∼j σ
(

ziz
T

j

)
∏

i6∼j

(

1 − σ
(

ziz
T

j

))

. For small β, subsets that would
be cliques, if it were not for a small number of missing links, form a cluster. To bias Z to have a small number of
cliques, we reparameterise Z as a set of column vectors z:

Z̃ = (α1z1, . . . , αCmax
zCmax

) (4)

where αc ∈ {0, 1} are indicators. We define a Beta-Bernoulli process prior on α to encourage a small number of α′s

to be used. The resulting posterior p(α,Z|A) is intractable and requires approximation. We therefore implemented
a collapsed Variational Bayes approximation, including additional Mean-Field Theory assumptions. In Fig. 3 we
examined a ‘difficult’ DIMACS challenge problem which hides a single large clique of size 12 amongst many smaller
cliques. Our algorithm successfully found a complete description of all clusters in the graph.

Summary and Outlook

We consider graph clustering by extending the incidence matrix formalism to more general clique-matrices. Embedded
within a statistical framework, we can decompose a graph into clusters, using a parameter to control how ‘perfect’ the
cliques should be. To encourage large cliques to be discovered, we use a Beta-Bernoulli prior on the columns in the clique
matrix. Formally the resulting inference problem is hard, but can be approximated using, for example, Variational
Bayes. Using clique matrices, we showed how to solve problems in Relational Machine Learning requiring constrained
covariance matrices. The same ideas can be applied to (diffusion) kernel-learning. In addition, we successfully found
a complete clique decomposition of a ‘difficult’ DIMACS graph which, by construction, is not amenable to some
standard recursive MAX-CLIQUE approximations. We’ve additionally applied our technique to cluster gene-expression
profiles and find large well-connected clusters in social networks. In the future we will investigate alternative inference
approximations in order to scale up to larger systems. Our c-code implementation is available on request.
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Figure 3: (a) Adj. matrix for the DIMACS brock200-2 MAX-CLIQUE challenge. (b) Clique Matrix. (c) Log2-histogram
of clique-sizes(+1) in the Clique Matrix; correctly solves MAX-CLIQUE (12) as well as identifying all remaining clusters.
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