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Stat 521A
Lecture 8
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Outline

• Forwards backwards on chains

• FB on trees
• FB on clique chains

• FB on clique trees
• Message passing on clique trees (10.2-10.3)

• Creating clique trees (10.4)
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Forwards algorithm
1. predict: compute the the one-step-ahead predictive density p(St|x1:t−1) as

follows:

p(St = j|x1:t−1) =
∑

i

p(St = j, St−1 = i|x1:t−1) (1)

=
∑

i

p(St = j|St−1 = i)p(St−1 = i|x1:t−1) (2)

In the second step we used the fact that St ⊥ X1:t−1|St−1.

2. update: compute p(St|xt,x1:t−1) using Bayes rule, where we use p(St|x1:t−1)
as the prior:

p(St = j|x1:t) =
1

ct
p(xt|St = j)p(St = j|x1:t−1) (3)

where we used the fact that Xt ⊥ X1:t−1|St. The normalizing constant ct is
given by

ct = p(xt|x1:t−1) =
∑

j

p(xt|St = j)p(St = j|x1:t−1) (4)

The basecase is

p(S1 = j|x1) ∝ p(S1 = j)p(x1|S1 = j) = πjp(x1|S1 = j) (5)
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Matrix vector form

αt(j) = p(St = j|x1:t) (1)

bt(j) = p(xt|St = j) (2)

A(i, j) = p(St = j|St−1 = i) (3)

Hence the recursion step is

αt(j) ∝ bt(j)
∑

i

Aijαt−1(i) (4)

This can be rewritten in matrix-vector notation as

αt ∝ diag(bt)A
Tαt−1 (5)

It issomewhat clearer if weuseMatlab-stylenotation, anduse .∗ to denoteelementwise
multiplication by a vector:

αt ∝ bt. ∗ (A
Tαt−1) (6)

The log-likelihood of the data sequence can be computed from the normalizing con-
stants as follows:

log p(x1:T ) =

T∑

t=1

log p(xt|x1:t−1) =
T∑

c=1

log ct (7)
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Matlab

Listing 1: Listing of hmmFilter
f unct i on [alpha, loglik] = hmmFilter(initDist, transmat, obslik)
% i ni t Di s t ( i ) = Pr ( Q( 1) = i )
% t r ansmat ( i , j ) = Pr ( Q( t ) = j | Q( t - 1) =i )
% obsl i k( i , t ) = Pr ( Y( t ) | Q( t ) =i )
[K T] = size(obslik);
alpha = zeros(K,T);
[alpha(:,1), scale(1)] = normalize(initDist(:) . * obslik(:,1));
for t=2:T

[alpha(:,t), scale(t)] = normalize((transmat' * alpha(:,t-1)) . * obslik(:,t));
end
loglik = sum(log(scale+eps));

Listing 2: Listing of makeLocalEvidence
f unct i on localEvidence = makeLocalEvidence(model,obs)
% l ocal Ev i dence( i , t ) = p( Y( t ) | Z( t ) =i )
localEvidence = zeros(model.nstates,size(obs,2));
for i = 1:model.nstates

localEvidence(i,:) = exp(logprob(model.emissionDist{i },obs'));
end
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Offline estimation: goals
• Singleslicemarginals:

γt(j)
def
= p(St = j|x1:T ,θ) (1)

for all 1 ≤ t ≤ T . This can be computed via the forwards backwards algo-
rithm, as wediscuss in Section ??.

• Two-slicemarginals

ξt−1,t(i, j)
def
= p(St−1 = i, St = j|x1:T , θ) (2)

These are needed for parameter estimation, as described in Section ??. These
quantitiesareeasy to computeusing forwards-backwards, aswedescribein Sec-
tion ??.

• The posterior mode, or most probable path:

s
∗
1:T = argmax

s1:T
p(s1:T |x1:T ,θ) (3)

This can be computed by the Viterbi algorithm, aswe describe in Section ??.

• Samples from the posterior

s1:T ∼ p(s1:T |x1:T ,θ) (4)

This can be computed by the forwards ����ltering, backwards sampling algo-
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Filtering vs smoothing vs Viterbi
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Fixed lag smoothing
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FB

p(St|x1:T ) ∝
∑

s1:t−1

∑

st+1:T

p(s1:t−1,x1:t−1, St,xt, st+1:T ,xt+1:T ) (1)

=
∑

s1:t−1

∑

st+1:T

p(s1:t−1,x1:t−1)p(St|st−1)p(xt|St)p(st+1:T ,xt+1:T |St)(2)

=
∑

st−1

p(st−1,x1:t−1)p(St|st−1)p(xt|St)p(xt+1:T |St) (3)

∝
∑

st−1

p(st−1|x1:t−1)p(St|st−1)p(xt|St)p(xt+1:T |St) (4)



10

Matrix vector form

Let us de�ne the following notation

αt(j)
def
= p(St = j|x1:t) (1)

βt(j)
def
= p(xt+1:T |St = j) (2)

γt(j)
def
= p(St = j|x1:T ) (3)

Then wecan rewrite theaboveequation as

γt(j) ∝
∑

i

αt−1(i)Aijbt(j)βt(j) (4)

Furthermore, let us de�ne theone-step ahead predictivedensity

at(j)
def
= p(St = j|x1:t−1) =

∑

i

αt−1(i)Aij (5)

Then wecan rewrite theaboveequation as

γt(j) ∝ at(j)bt(j)βt(j) (6)
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Backwards algorithm

βt−1(i) = p(xt+1:T |St−1 = i) (1)

=
∑

j

p(St = j,xt,xt+1:T |St−1 = i) (2)

=
∑

j

p(St = j|St−1 = i)p(xt|St = j, St−1 = i)p(xt+1:T |St = j, St−1 = i)(3)

=
∑

j

p(St = j|St−1 = i)p(xt|St = j)p(xt+1:T |St = j) (4)

=
∑

j

Aijbt(j)βt(j) (5)

whereEquation ?? is justi�ed sinceXt ⊥ Xt+1:T |St and Equation ?? is justi�ed since
Xt ⊥ St−1|St andXt+1:T ⊥ St−1|St. We can write the resulting equation in matrix-
vector form as

βt−1 = A(bt. ∗ βt) (6)

The basecase is

βT (i) = p(xT+1:T |ST = i) = p(∅|ST = i) = 1 (7)
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Matlab

Listing 1: Listing of hmmBackwards
f unct i on [beta] = hmmBackwards(transmat, obslik)
% bet a( i , t ) pr opt o p( y( t +1: T) | Q( t =i ) )
[K T] = size(obslik);
beta = zeros(K,T);
beta(:,T) = ones(K,1);
for t=T-1:-1:1

beta(:,t) = normalize(transmat * (beta(:,t+1) . * obslik(:,t+1)));
end
\end{codeCap

\begin{codeCap}{Listing of \codename{hmmFwdBack}}
f unct i on [gamma, alpha, beta, loglik] = hmmFwdBack(initDist, trans mat, obslik)
% gamma( i , t ) = p( Q( t ) =i | y( 1: T) )
[alpha, loglik] = hmmFilter(initDist, transmat, obslik);
beta = hmmBackwards(transmat, obslik);
gamma = normalize(alpha . * beta, 1); % make each col umn sum t o 1
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Avoiding underflow

αt(j) = p(St = j|x1:T ) =
1

ct
bt(j)

∑

i

Aijαt−1(i) (1)

ct =
∑

j

bt(j)
∑

i

Aijαt−1(i) (2)

β̂t−1(i) =
1

dt−1

∑

j

Aijbt(j)β̂t(j) (3)

dt−1 =
∑

i

Aijbt(j)β̂t(j) (4)

p(St = j,x1:t) = p(St = j|x1:t)p(x1:t) = αt(j)(
t∏

τ=1

cτ ) (5)

p(xt+1:T |St = j) = β̂t(j)(
T∏

τ=t

dτ ) (6)
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Avoiding underflow

γt(j) = p(St = j|x1:T ) (1)

=
p(xt+1:T |St = j)p(St = j, x1:t)

p(x1:T )
(2)

=
(
∏T

τ=t dτ )β̂t(j)(
∏t

τ=1 cτ )αt(j)∑
j′(
∏T

τ=t dτ )β̂t(j
′)(
∏t

τ=1 cτ )αt(j
′)

(3)

=
βt(j)αt(j)

∑
j′ β̂t(j

′)αt(j′)
(4)
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Two-slice marginals

Nij =
T−1∑

t=1

E[I(St = i, St+1 = j)|x1:T ] =
T−1∑

t=1

p(St = i, St+1 = j|x1:T ) (1)

ξt−1,t(i, j)
def
= p(St−1 = i, St = j|x1:T )

∝ p(St−1 = i|x1:t−2)p(xt−1|St−1 = i)p(St = j|St−1 = i)p(xt|St = j)p(xt+1:T |St = j)

= at−1(i)bt−1(i)Aijbt(j)βt(j)

ξt−1,t ∝ A. ∗ (αt−1 ∗ (bt. ∗ βt)
T ) (2)
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Time and space complexity

• O(T K b) time, b = branching factor

• In discretization of cts space,
O(T K log K) or O(T K) – Felzenswalb & 
Huttenlocher

• O(T K) space, O(T K^2) time
• O(K log T) space, O(T log T K^2) time (island 

algorithm)
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Viterbi

MAPpath
s∗1:T = argmax

s1:T
p(s1:T |x1:T ) (1)

Max marginals

s∗t = argmax
i
p(St = i|x1:T ) = argmax

i

∑

s−t

p(St = i, s−t|x1:T ) (2)

δt(i)
def
= max

s1,...,st−1
p(s1:t−1, st = i,x1:t|θ)

δt+1(j) = max
i
δt(i)Aijbt+1(j)

ψt+1(j) = argmax
i
δt(i)Aijbt+1(j)

δ1(j) = πjb1(j)

Traceback

S∗T = argmax
i
δT (i)

S∗t = ψt+1(s
∗
t+1)
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Viterbi example

δ1(1) = 0.5

δ2(1) = δ1(1)A11b2(1) = 0.5 · 0.3 · 0.3 = 0.045

δ2(2) = δ1(1)A12b2(2) = 0.5 · 0.7 · 0.2 = 0.07
Top N list
Discrim. reranking
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Fwd filtering, back sampling

s∗1:T ∼ p(s1:T |x1:T ,θ) (1)

s∗t ∼ p(St|s
∗
t+1:T ,x1:T ) (2)

∝ p(St|s
∗
t+1,x1:t) (3)

p(St = i|St+1 = j, x1:t) = p(St = i|St+1 = j, x1:t, xt+1) (4)

=
p(St = i, St+1 = j|x1:t+1)

p(St+1 = j|x1:t+1)
(5)

=
p(xt|St = j)p(St = j|St−1 = i)p(St−1 = i|x1:t−1)

p(St+1 = j|x1:t+1)
(6)

=
Aijαt(i)bt+1(j)

αt+1(j)
(7)

Listing 1: Listing of hmmSamplePost
f unct i on [samples] = hmmSamplePost(initDist, transmat, obslik, ns amples)
% sampl es( t , s) = val ue of S( t ) i n sampl e s
[K T] = size(obslik);
alpha = hmmFilter(initDist, transmat, obslik);
samples = zeros(T, nsamples);
dist = normalize(alpha(:,T));
samples(T,:) = sample(dist, nsamples);
for t=T-1:-1:1

tmp = obslik(:,t+1) ./ (alpha(:,t+1)+eps); % b_{ t +1} ( j ) / al pha_{ t +1} ( j )
xi_filtered = transmat . * (alpha(:,t) * tmp');
for n=1:nsamples

dist = xi_filtered(:,samples(t+1,n));
samples(t,n) = sample(dist);

end
end
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Message passing on a clique tree

• To compute p(X_i), find a clique that contains X_i, 
make it the root, and send messages to it from all 
other nodes.

• A clique cannot send a node to its parent until it is 
ready, ie. Has received msgs from all its children.

• Hence we send from leaves to root.
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Message passing on a clique tree

• .
P (J) =

∑

L

∑

S

ψJ (J,L, S)
∑

G

ψL(L,G)
∑

H

ψH(H,G, J)
∑

I

ψS(S, I)ψI(I)
∑

D

ψG(G, I,D)
∑

C

ψC(C)ψD(D,C)

︸ ︷︷ ︸
τ1(D)

=
∑

L

∑

S

ψJ (J,L, S)
∑

G

ψL(L,G)
∑

H

ψH(H,G, J)
∑

I

ψS(S, I)ψI(I)
∑

D

ψG(G, I,D)τ1(D)

︸ ︷︷ ︸
τ2(G,I)

Multiply terms in bucket (local & incoming),
sum out those that are not in sepset,
send to nbr upstream
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Upwards pass (collect to root)

βi(Ci) = φi(Ci)
∏

k∈ni,k �=j

δk→i(Sk,i)

δi→j(Sij) =
∑

Ci\Sij

βi(Ci)



24

Message passing to a different root

• If we send messages to a different root, many of 
them will be the same

• Hence if we send messages to all the cliques, we 
can reuse the messages- dynamic programming!
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Downwards pass (distribute from root)

• At the end of the upwards pass, the root has seen 
all the evidence.

• We send back down from root to leaves.

βj(Cj) = φj(Cj)
∏

k∈nj

δk→j(Sk,j)

δj→i(Sij) =
∑

Cj\Sij

φj(Cj)
∏

k∈nj ,i �=k

δk→j(Sk,j)

=
∑

Cj\Sij

βj(Cj)

δi→j(Sij) Use division operator to avoid double counting
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Beliefs

• Thm 10.2.7. After collect/distribute, each clique 
potential represents a marginal probability 
(conditioned on the evidence)

• If we get new evidence on Xi, we can multiply it in 
to any clique containing i, and then distribute 
messages outwards from that clique to restore 
consistency.

βi(Ci) =
∑

x Ci

P̃ (x)
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MAP configuration

• We can generalize the Viterbi algorithm to find a 
MAP configuration as follows.

• On the upwards pass, replace sum with max.

• At the root, find the most probable joint setting and 
send this as evidence to the root’s children.

• Each child finds its most probable setting and 
sends this to its children.

• The jtree property ensures that when the state of a 
variable is fixed in one clique, that variable 
assumes the same state in all other cliques.
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Samples

• We can generalize forwards-filtering backwards-
sampling to draw exact samples from the joint as 
follows.

• Do a collect pass to the root as usual.

• Sample xR from the root marginal, and then enter it 
as evidence in all the children.

• Each child then samples itself from its updated 
local distribution and sends this to its children. 
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Calibrated clique tree

• Def 102.8. A clique tree is calibrated if, for all pairs 
of neighboring cliques, we have

• Eg. A-B-C  clq tree AB – [B] – BC. We require

• Thm. After collect/distribute, all cliques are 
calibrated.

• Thm 10.2.12. A calibrated tree defines a joint 
distribution as follows

∑

Ci\Si,j

βi(Ci) =
∑

Cj\Si,j

βj(Cj) = µi,j(Si,j)

∑

a

βab(a, b) =
∑

c

βbc(b, c)

p(x) =

∏
i βi(Ci)∏

<ij> µi,j(Sij)

p(A,B,C) =
p(A,B)p(B,C)

p(C)
= p(A,B)p(C|B) = p(A|B)p(B,C)eg
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Clique tree invariant

• Suppose at every step, clique i sends a msg to 
clique j, and stores it in µi,j:

• Initially µi,j=1 and βi = ∏f: f ass to i φf. Hence the 
following holds.

• Thm 10.3.4. This property holds after every belief 
updating operation.

p(x) =

∏
i βi(Ci)∏

<ij> µi,j(Sij)
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Out of clique queries

• We can compute the distribution on any set of 
variables inside a clique. But suppose we want the 
joint on variables in different cliques. We can run 
VE on the calibrated subtree

• eg
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Out of clique inference
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Creating a Jtree

Murphy PhD thesis (2002) p140
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Max cliques from a chordal graph

• Triangulate the graph according to some ordering.

• At each step, keep track of the clique that is 
created; if it is a subset of any previously created 
clique, discard it (since non maximal).
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Cliques to Jtree

• Build a weighted graph where
Wij = |Ci intersect Cj|

• Find max weight spanning tree. This is a jtree.


