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Outline

• MAP param estimation for UGMs (20.1-20.4)
• Learning using approximate inference (20.5)

• Alternative objectives (20.6)
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Likelihood fn for UGMs

• Log-linear model

Concave
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LogZ: first deriv
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logZ: second deriv
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Finding the MLE

At optimum, model moments = empirical moments

Just do gradient based optimization, eg stochastic gradient descent.
Expensive to compute Hessian explicitly, so use Quasi-Newton.

Must perform inference once per gradient
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CRFs

• Conditional density models

Must perform inference M times per gradient
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MRFs with hidden variables

• Must perform inference M times per gradient

clamped unclamped
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CRFs with hidden variables

• Training is similar to MRFs with hidden variables, 
except expectations condition on x_n, so need to 
be redone for each case
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Summary

∇ =
∑

i

EHf(Hi, xi)−MEH,X [f(H,X)]

∇ =
∑

i

f(xi)−MEX [f(X)]

∇ =
∑

i

f(xi, yi)−
∑

i

EY [f(xi, Y )]

∇ =
∑

i

EHf(xi, yi, H)−
∑

i

EH,Y [f(xi, Y,H)]
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ML and MaxEnt

• MLE in the expfam is equivalent to MaxEnt subject 
to moment constraints
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Proof
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MAP estimation

• Convex prior + convex likelihood makes objective 
strictly convex (unique soln)

• Also helps prevent overfitting

• L2 and L1
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Learning with approximate inference

• Recall that the gradient requires model expectation 
over the features

• We can use approximate inference to approximate 
the expectation,  but approximate gradients can 
cause learning to diverge 
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Pseudo moment matching

• At the optimum, the pseudo marginals must satisfy

• Suppose we use tabular features. Then

• Hence we don’t need to run inference. There are 
multiple potentials that can generate these beliefs. 
We can uniquely recover one set using (for any 
ordering i<j)
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Unified inference and learning

• Pseudo moment matching only works for 
unconditional, tabular potentials with no tying and 
no regularizer

• To combine BP with param optimization, we can 
optimize 

The model parameters theta are the Lagrange multiplers for E[f]
And the messages are the Lagrange multipliers for the local consistency
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Example
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Double loop algorithm

• Inner loop optimizes δij by iterating the fixed point 
eqns

• Outer loop optimizes θ eg using gradient descent
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Approximating Z

• Loglik

• We can approximate the sum in different ways
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Pseudolikeliood

• Define
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Gradient of PL

Convex
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Consistency of PL

• Thm 20.6.2 (Besag). If data is generated from our 
model with params θ*, then as M->inf, argmax
PL(θ) -> θ*.

• Pf. The empirical approaches P(θ*). Hence

• And

• Hence gradient of PL is zero at θ*.
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Problem with PL

• Ex 20.6.3 (cf Hinton’s greek vase)

Assume X1, X2 are strongly correlated (eg mirror images),
And X1,Y and X2,Y are less strongly correlated.
PL will learn that X1 can be predicted from X2, and will ignore Y.
At test time, if we observe Y and want to predict X1, we are hosed.
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Sample based learning

• Recall loglik is 

Sample K x’s given θ
Compute ln Z(θ)
Update θ
Repeat
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Contrastive divergence

• Might need to sample many x’s to accurately 
approximate Z, but this is slow

• So define a set D- of randomly perturbed neighbors 
of D, and use

• Often xi- is generated by applying 1 step of Gibbs 
sampling to xi
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CD for RBMs

• RBMs have 1 layer of hidden variables, so we need 
an additional expectation

h
+

n ∼ p(h|xn, θ)

h
−

n ∼ p(h|x
−

n , θ)

Reconstruction/
Fantasy data

Interpretation of data

Interpretation of your
fantasies

Stop learning when your dreams match reality

∇i = Ex∼DEhfi(x,h)− Ex∼D−E
h
fi(x,h)

≈
1

N

∑

n

E
hn
fi(xn,hn)−Ehnfi(x

−

n ,hn)

≈
1

N

∑

n

fi(xn,h
+

n )− fi(x
−

n ,h
−

n )

x
−

n ∼ p(x|h
+

n ,θ)
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MAP approximation (perceptron training)

• Let us approximate Z (sum over all X) by the MAP 
estimate. Objective becomes

• For a single data term

• Hence gradient is
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Problem with MAP approximation

• The objective is always negative or 0 since

• We can always achieve the maximum of 0 by 
setting \theta=0

• “collapsing” problem
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Max-margin training

• For conditional density models, we can change the 
objective to the following, which prevents collapsing

To prevent margin blowing up we bound \theta

QP: quad obj+linear constraints
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Slack variables

• We want to minimize ||w||^2 st

• But we may not be able to achieve this gap, so we 
introduce slack variables (results in a Hidden 
Markov Support Vector Machine)

Thanks to Mark Schmidt
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Margin rescaling

• Intuitively if Yi’ is similar to Yi, we don’t mind if their 
probabilities are similar, but if they are very 
different, we want the gap to grow

• This gives max-margin markov network (M3N) aka 
structural SVM

Thanks to Mark Schmidt
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Unconstrained form

• We can eliminate the slack vars to get

• Requires 2nd best decoding. But since ∆(Yi,Yi)=0 
we can write

• This can use generic MAP decoders that just 
change the local evidence potentials on Y’.

• For associative markov nets, globally optimal.

Thanks to Mark Schmidt
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Cutting plane optimization

• Many possible optimization methods
• Simple approach for QP is cutting planes:
• Maximize quad objective with empty set of 

constraints – this is an upper bound.
• Add a violated constraint (*)
• Repeat until no violations.
• Thm: only need to add a poly num constraints.
• To find if constraints are violated: define

• If P(y[m],x[m]) < p(ymap,x[m]) +1, add this violation. 
Else all constraints for m’th case are ok


