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 Algorithms for finding MAP structure (18.4)
« MCMC over DAG structure (18.5)
 Dynamic programming + MH

e Stochastic search



Computationally intractable

d
2

e There are O(d!2( ))DAGS on d nodes

d 2 |3 4 5 6 7 8 9

#G(d) 3 |25 [543 |29,281 3,781,503 1.1e9 7.8ell 1.2e15




Trees

Can learn optimal tree using MST algo in O(n? log n
+ n? M) time, n=#num nodes, M=#cases

Definition 18.4.1; 1 .r.'ri"u ork structure G is ealled tree-structured if ench variable X hos
af most one parent in G, | ].:'EL;,; | = 1. u

A(G) = score(G @ D) —score(Gy @ D)

AG) = z (FamScore(X; | Pa¥ : D) — FamScore(X; : D))
i.Pa¥=£0

wyx,—.x, = Fambcore(X; | X; : T) — FamScore(X; : D)

A(G) = Z WX, X,

X, o Undirected max weight spanning tree

Score equivalence => WX, Xy = WXy—X;-

svalu e svsen eulu s TP T

. Ply | =
scorep (G @ T') —scorepiGp @« D= LIZPII_I W) log | =)
s Ply)

— M T4(X;Y)



TAN classifiers

 Tree-augmented naive Bayes

e Can learn tree structure for each class conditional
density

‘l/’// 7= 0
ZAVANN
X = X & A, X, X, X



Mixtures of trees

e We can fit mixtures of trees using EM: just run MST
algorithm in M step

« Analogous to mixture of diagonal Gaussians



DAG with known order

Can find optimal set of parents for each node
Independently

Proposition 18.4.2: Lef = be an ondering over X, and lef score(G @ D) be o decomposable
seore. Af we choose G to be the network where

Paf = arg ey 31'1_11&% . }FamSc:}re[Xi | U = DY

for ench i, then G moximizes the score among the structures consistent with <.

If at most d parents Iast node Xn must select from
Xnis 1+ J +... + } = }

If CPDS are GL|\/|S can use Iasso to find parents
If order unknown, can search over orders.



Dependency networks

A depnet is a set of full conditionals p(Xi|X(-1))
learned independently.

There may not be any joint which Is consistent with
these conditionals.

However, one can define a (non-unique) joint by
using an ordered Gibbs sampler.

If the conditionals are learned from (lots of) data,
they are likely to be consistent.

By performing variable selection at each node
Independently, we get a sparse graph.

Provides a fast way to visualize dependencies.



Collaborative filtering

* One succesful application of depnets is CF.
« Xi=1 if item I has been bought, Xi=0 otherwise

 Assume S=set of bought items, Sbar = not bought
items, | = target item. Compute p(Xi|S=1,Sbar=0).

* |In a depnet, this is a simple lookup — all other
nodes are observed.

* |n a DGM, this Is also fairly simple — product of
CPDs in the Markov blanket.

* Both technigues have similar predictive accuracy,
but depnet is much faster to learn.

e Ships in Microsoft’'s ecommerce package.



DAG with unknown order

Thm 18.4.3 It is NP-hard to find the optimal DAG
with d >= 2 parents.

Standard approach: heuristic local search (eg hill
climbing), using add/ delete/ reverse edge (n?
neighbors to each DAG).

Diameter of space is O(n?): to get from G1 to G2,
delete all edges of G1 then add all edges of G2.

If too many neighbors, use first best instead of
evaluating all of them.

Often there will be large plateaus of I-equivalent
DAGs. Can use tabu search to escape these.

Multiple restarts or data perturbation.
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Data perturbation

e Can be used to escape local minima for many ML
algorithms, where score = sum_i score(D 1)

e |dea: use weights w_1I, and perturb them at random
(or more cleverly — rather like boosting)

el s A

[

i
d
i)
11

G — Search(Gy, D, score, O)
gl:u:qst e E.-F.
I +— 1
for i =1.,... until convergence
D' — Perturb(D,t)
G +— Search(G, T, score, Q)
if score(G @ D) > score(Uhest @ ') then
'::-;hEE-t — g

L «— "Ir'i'f

return Ghese
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Efficient scoring of proposed new graph

MG o)=score(o(G) @ D) —scorelG @ 1)

to be the chiange of score associated with applying 0 on G. Using score decomposition, we

can compute this quantity rebatively efbiciently.
Proposition 18.4.4: Let G be o wetwork steoacture, and gcore be o decornposalile score,

o ffow " A X —=Y" wnd X =Y &G, When

MG r:aszamScurE[]ZPa%“: U{X} : 'DJ—F&mSccrre[}’,PaE, : D)
o fois “Didete X Y " und X =Y € G, then

MG : o) = FamSecore(Y, Pa%’i —{X} : D) — FamScore(Y, PE-.%”, : D)
o [fow “Neverse X =Y " und X =Y € G, thew

G : o) = EamSmreL‘LPaf{- LIEYE o ﬂ,‘l+Fam5c::ure{]"Pa$—-{_‘{} s )
—FamSmre(X,Paﬁ- » D) — FamBeore( Y, F‘a%}, i B
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Efficient update of cached scores

« After accepting change, only have to update
scores of affected families - O(n) operators

Proposition 18.4.5: Let G and G be bwo network stewctures, and score be o decomposihl
SOOTE

o If o iy pither “Add X — Y " wr "Delete X — Y7 und PE%}- = P&{f. then 6(G @ o) =
G : o)

o [fow “Rrverse X =Y P G — Pa¥  und Pa¥ = Pa% . thew G : o)=4(G" 1 a)
Ha iy X X
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Sufficient statistics

 Need to walk over M rows for all the columns in a
given family

 |f we need to update n operators, this is O(nM) time

e Can use AD-trees for discrete data, or KD-trees for

cts data, to do this more efficiently (possibly subject
to approximation error)

14



 Need to search over O(n”2) operators to find best
at each step

e Can use a heap to find the best in O(1) time If we
do O(n log n) time to update it when scores change
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Learning params vs structure

e |CU Alarm network

2
158
-
ﬁ """"" Parameter learning
= i
% Structure learning
= 1t
@
=
O
<
05 "-
u 1 1 1 1 1 1 1 L
L] 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

#samples

16



Dynamic programming (DP)

« Can analytically marginalize over d! orderings and all
possible subsets in O(d 29) time/ space
using DP and fast Mobius transform

» Since order of parents does not matter, eg p(X,|X,,X3) ==
P(X;]|X3,X,), we can share work

« Can find exact global MAP DAG

O(d! d 24) O(d-2)
() {}
/ ¢ \ / i \
(1) (2) (3) {1} 2} {3}
N N O\ ' ?{;
12 13 21 23 (31 (32 {1,2 1,3 2,3}
} } } } } } ~ v,
(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1) {1,2,3}
Ordered permutation tree Unordered permutation lattice

Koivisto & Sood, JMLR, 2004 17



Equivalence classes

e Can search through PDAG space - smaller than
DAG space, and fewer (if any) plateau

e To evaluate score of a PDAG, convert to a DAG
then use score for DAG

* To find neighbors: convert PDAG to DAG, add or
delete edge; this changes skeleton hence moves to
a nhew PDAG

 Greedy Equivalence Search: start with empty
PDAG, add best edge until local max, then delete
nest edge till local max. If M->infty, this will
orovably find optimal PDAG given any consistent
scoring fn.

 Performing local updates to score of a PDAG Is
harder.
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Bayes model averaging

 When the sample size is small, the posterior p(G|D)
gives support to multiple (non equivalent) models

 We should perform BMA when performing
prediction

PE[M +1]| D) =3 PEM +1] | D.G)P(@G | D)
 And when computing E[f(G)|D], where f(G) is some
feature, eg f(G)=there Is an edge X->Y in G,
average path length in G

Fpigm[fIG)] = Z flG) PG | D).
i
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MC3

 Markov Chain Monte Carlo Model Composition

e Use MH In space of DAGSs, with proposal = uniform
over neighbors (add/delete/reverse edge)

* Does not mix well in more than ~10 dimensions.
Also, posterior gets more peaky as sample size
Increases (can use parallel tempering).
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MH on Alarm

Soom

Init empty
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MH in order space

« Given a known order, we can integrate over all
possible graphs by summing over all parents sets

 Hence use MH to sample over orders, using
traveling-salesman like moves

I:_.u:l'.;.'-h_ ...a:l':!J ...a]'::d. ..a]'.;.'-|n_:||—"|:_.|]':=|_ ""'1';"-!.1 X:.i' "]";'F!n_-l

P DYTH( <" = <)
P« INTRG — <)

min

Target distribution

P(D|=<) = z Hffxp-{_FamSmrna-gil'.z-|Pa_5-f;1 . D))
Helig o @

= H Z exp{FamScoreg(X; | U; : D)}
i Uyl o

U ={U U <X, |U| < k}.
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Posterior features

e Given samples from p(<|D) we compute
g
P(fID)~ 5 P(f|D.=).
t=1

e Parent featiires

Proposition 18.5.1:

exp{ FamScoreg(X; | U : D)}

P(Pa§, =U | D, <) = :
\Eax, | D, =) ZU'EM,_{ exp) FamScoreg(X; | U’ : D)}

 Edge features
Proposition 18.5.2;

Z{Ueu,,_{ : X,eU) exp{FamScoreg(X; |U : D)}
> veu, , exp{FamScorep(X; | U : D)}

P(X; € Pa§ |« D)=

 General teatures: sample G given <, then use

P(f,D |<) P(f,D|<)= ), FfGPG|<)P(P|G)

Plif|=.D= .
U =P=3575 Gega
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RB MH on Alarm
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Dynamic programming

e Kolvisto & Sood showed how to compute all edge
marginals p(Gij=1|D) exactly in O(n 2*n) time

 Requires special (“modular”) prior p(G) which can
be unnatural (see later)
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Comparison of approaches

Y |P(Gi; = 1|D) — P(G;; = 1|D)| (—//\CFﬁ)F

1 PAG+MH

4&
i
o

) .

J

}4’“7 tire

/

V
5 sec (d=10) to 5 mins (d=20)
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Error floor due to wrong p(G)

Error due to wrong p(G)
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p(G) needed by DP and MH+order

« Joint (“modular”) prioron G and <

unordered set of parents ordering of predecessors

* Induced prior on p(G)

p(G) — Zp(Ga <)

30



Graphs consistent with more orderings are

more probable

: JX\\ >€(>(‘V> =ya >

o Effect will not get erased even with infinite dasance
both models are likelihood equivalent
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Problems with induced p(G)

e Prior is highly non-uniform
 Effect will not get erased even with infinite data
«Cannot encode arbitrary prior knowledge in p(G)

Z sz I(G, < is valid)

unordered set of parents  ordering of predecessors,« 1

-3
x10 * Modular-Flat; KL from uniform = 0.56 x10 Koivisto: KL from uniform = 2.82

1 DAG Index 29,281



Solutions to p(G) problem

e Importance sampling -- Ellis & Wong '06
— Use MH+order as proposal
— #P-hard to compute exact IS weights

*k

w@ - PG _ 711 pi(GY)
p(G) >2 % H?:l pi(Gi)q; (<) I(G, < 1is valid)
1

>~ I(consistent(<,G))
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Solutions to p(G) problem

e Importance sampling -- Ellis & Wong '06
 Metropolis Hastings -- this paper
— Use DP marginals as proposal for MH

/\C(’fOF

 PAGrn
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MH with DP+local proposal

« Compute p;=p(G;=1|D) offline using DP
 Wp [3, we use a standard local move

* wp 1-f3, sample a new graph ~ p;

 |f =0 (global) independence sampler
 |f 3=1 (local) standard proposal
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Why MH?

« DP alone has 3 problems
1. Modular prior p(G)

2. Cannot compute prob. of “long range” features (e.g.,
path from i to |), only edge features.

3. Very slow to compute predictive density
pP(x|D) = 2.5 p(X|G) p(GID)

36



MH allows any p(G)

» Propose using ¢(G’|G)
e Acceptwpa

a = min (1 p(D|G")p(G’) q(G|G/))

p(DIG)p(G) ¢(C']G)
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Modular vs uniform p(G)

5 node “cancer” network

Markov equivalence class

2
4
2 4

A

mecme (10000 samples)

mecme (50000 samples)

mecme (100000 samples)

A ‘A A A
d N PN S N h"
B"n 7 B h" .el‘[': B‘m j':'i. | ¢ N
"4 A"
D ~~A'E D E D E D E
(a) (b) (c) (d)
theary (inf sample size) unifarm prior mod-flat

Modular prior

biases posterior
even as |D}» oo

MH fixes bias
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T-cell signaling network

edges, uncertain interventions, AUC=0.714

_e—‘D/G’Ir’\a/)

0 0.2 04 06 0.8 1
false positive rate

Ground truth@®

Exact P(G=1|D)

EDED @ g

“Causal Protein-Signaling Networks derived from Kpdrameter Single-Cell Data”,

Sachs, Perez, Pe’er, Lauffenberger, Nolan, Sci2@0é
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Informative p(G)

osphorylation (d=11, N=5400) Ground truth DAG

AKT Inh

G06976

Data Point

uo126

PMA

raf mekl2 plcy pip2  pip3 erk akt pka pkc p38 ink

Observed Biomolecule

ROC P(G;=1|D)
Tcell backbone edges, uncertain interventions, AUC=0.714
' «D

06

true positive rate

04

0.2

0 . .
0 0.2 0.4 0.6 0.8 1

false positive rate

“Reconstructing Gene Regulatory Networks with Baredietworks by Combining Expression Data
with Multiple Sources of Prior Knowledge”, Werhli Busmeier, 2007
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Sampling G allows any features

 DP can only compute posterior of features that are
functions of a local family topology

Possible
Specific parents [JEdge A->C

. ® @ ® ®
© @ @
A in Markov blanket of C
®» ® ®» ©
X X Yy
© ©

Not possible
[1Causal path A->B, mediated by C

@
©
‘4—
[IDirected path A->B v
® © ©i@®
AN A
© © ®"

By sampling DAGs, we can compute E[f(G)] for arbitrary

features f
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Posterior features

 We sampled N=10k data from d=20 node graph
with random CPTs

 Compute p(edge i->}|D) and p(path i->j|D)

“child” network
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AUC for p(feature=1|D)

Area under the ROC curve after 200 seconds ofslatk time*

Edge Features Path Features
1} ; ' - ‘ 1
| |
g _ L +
| L 09 F - | = =
. é l , | S— e —
4 > i 1
2 085 | ! 1 = .
| 0.8 r |
| 1
-+ |
07 | |
1
0.7 - ' . w b . . . -
Local Order Global Hybrid Local Order Global Hybrid
B=1 =0 =0.1 B=1 =0 =0.1

All algorithms were implemented in Matlab/C and ama standard desktop

43



Sampling G allows fast prediction

 DP can compute the marginal likelihood of data)p(D
 Hence can compute the predictive likelihood ad¢st point X:

_ p(z,D)
p(z|D) = (D)

e Since DP integrates out G, we have to keep D,
and re-run algorithm for each x, which is very slow

e Qur approach: keep a sample 6f~op(G|D) and compute
posterior mean parametefs  for eaéh G

M

palD) = 3 [ p(alG.OW(OIG. DINGID) = 373 plalG*, T
G

s=1
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US census data (d=15,N=49k)

Adult (US Census)

0
-0.02 f _ - - - -
S
ﬂon 1 I—Hgl_l__uil u_l?.LL.LLJMI EJJ&MLW_‘W
T 004 T
g5
é —-0.06 e
2 Local
oca
-
-0.08 — — — Global
Hybrid
O T T Order
() Optimal Dag
{ RawDP
-0.12 . : :
0 50 100 150 200

Time {seconds)

1. Exact BMA (but takes 350h!)

2. MH-DP hybridp=0.1

3. Plug-in MAP-optimal DAG, MH-DP glob4d=0, MH-order
4. MH-localf3=1

5. Gibbs
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Why MH-+DP?

— MH + DP mixes faster than MH + other

46



Edge marginal error vs time

2 ij [IP(Gij = 1|D) — pe(Gij = 1|D)

1

Local
— — — Global
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a e Order
< O { FRawDP
T os
>
[
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a 04
o
=3
Ll

0.2

0 L ! T - % X~ 1 = = -
0 20 40 60 80 100 120 140

Time (seconds)

d=5 cancer network
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Traceplots of log p(G,D)
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Repeatability

MH+DP (hybrid)

Hybrid

CD@)’

O

o]
8%8 5

B

0.2

04 0.6 08

We plot edge marginals after two runs from differ@mdom starting points

MH-order
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Run2
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Stochastic search

« MCMC approximates p(M=m|D) by counting how
many samples are equal to m.

e Since we can compute p(m,D) exactly, we don’t
need to visit m more than once. We can

approximate

p(m|D) ~ D)

Zm’inS p(m,’D)
 |tis better to rapidly move through model space,
covering as much posterior mass as possible.

e Shotgun stochastic search (SSS), mode oriented
stochastic search (MOSS)
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Occam’s window

e Goal: compute level set of the posterior
Cla) = {m: p(m|D) > ap(m™|D)}

e M”™* Is unknown, so approximate this by

C(a) = {m : p(m|D) = ap(m*|D)}

m* = arg ma%cp(m\D)
. . c .
e Can find this by beam search, throwing out models
that are worse than a time the current best

(Raftery, Dobra)
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