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Outline

• Algorithms for finding MAP structure (18.4)

• MCMC over DAG structure (18.5)
• Dynamic programming + MH

• Stochastic search
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Computationally intractable

• There are                 DAGs on d nodes

1.2e157.8e111.1e93,781,50329,281543253#G(d)

98765432d

O(d!2(
d

2))
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Trees

• Can learn optimal tree using MST algo in O(n2 log n 
+ n2 M) time, n=#num nodes, M=#cases

Score equivalence =>

Undirected max weight spanning tree 
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TAN classifiers

• Tree-augmented naïve Bayes

• Can learn tree structure for each class conditional 
density
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Mixtures of trees

• We can fit mixtures of trees using EM: just run MST 
algorithm in M step

• Analogous to mixture of diagonal Gaussians
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DAG with known order

• Can find optimal set of parents for each node 
independently

• If at most d parents, last node Xn must select from

• If CPDs are GLMs, can use lasso to find parents

• If order unknown, can search over orders.
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Dependency networks

• A depnet is a set of full conditionals p(Xi|X(-i)) 
learned independently. 

• There may not be any joint which is consistent with 
these conditionals.

• However, one can define a (non-unique) joint by 
using an ordered Gibbs sampler.

• If the conditionals are learned from (lots of) data, 
they are likely to be consistent.

• By performing variable selection at each node 
independently, we get a sparse graph.

• Provides a fast way to visualize dependencies.
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Collaborative filtering

• One succesful application of depnets is CF.
• Xi=1 if item i has been bought, Xi=0 otherwise
• Assume S=set of bought items, Sbar = not bought 

items, i = target item. Compute p(Xi|S=1,Sbar=0).
• In a depnet, this is a simple lookup – all other 

nodes are observed.
• In a DGM, this is also fairly simple – product of 

CPDs in the Markov blanket.
• Both techniques have similar predictive accuracy, 

but depnet is much faster to learn.
• Ships in Microsoft’s ecommerce package. 
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DAG with unknown order

• Thm 18.4.3 It is NP-hard to find the optimal DAG 
with d >= 2 parents.

• Standard approach: heuristic local search (eg hill 
climbing), using add/ delete/ reverse edge (n2

neighbors to each DAG).
• Diameter of space is O(n2): to get from G1 to G2, 

delete all edges of G1 then add all edges of G2.

• If too many neighbors, use first best instead of 
evaluating all of them.

• Often there will be large plateaus of I-equivalent 
DAGs. Can use tabu search to escape these.

• Multiple restarts or data perturbation.
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Data perturbation

• Can be used to escape local minima for many ML 
algorithms, where score = sum_i score(D_i)

• Idea: use weights w_i, and perturb them at random 
(or more cleverly – rather like boosting)
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Efficient scoring of proposed new graph
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Efficient update of cached scores

• After accepting  change, only have to update 
scores of affected families - O(n) operators
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Sufficient statistics

• Need to walk over M rows for all the columns in a 
given family

• If we need to update n operators, this is O(nM) time

• Can use AD-trees for discrete data, or KD-trees for 
cts data, to do this more efficiently (possibly subject 
to approximation error)
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Heaps

• Need to search over O(n^2) operators to find best 
at each step

• Can use a heap to find the best in O(1) time if we 
do O(n log n) time to update it when scores change
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Learning params vs structure

• ICU Alarm network
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Dynamic programming (DP)

• Can analytically marginalize over d! orderings and all 
possible subsets in O(d 2d) time/ space
using DP and fast Mobius transform

• Since order of parents does not matter, eg p(X1|X2,X3) == 
p(X1|X3,X2), we can share work

• Can find exact global MAP DAG 

()

(1) (2) (3)

(1,2) (1,3) (2,1) (2,3) (3,1) (3,2)

(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)

O(d!  d 2d)
{}

{2} {3}{1}

{1,3} {2,3}{1,2}

{1,2,3}

O(d·2d)

Ordered permutation tree Unordered permutation lattice

Koivisto & Sood, JMLR, 2004
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Equivalence classes

• Can search through PDAG space - smaller than 
DAG space, and fewer (if any) plateau

• To evaluate score of a PDAG, convert to a DAG 
then use score for DAG

• To find neighbors: convert PDAG to DAG, add or 
delete edge; this changes skeleton hence moves to 
a new PDAG

• Greedy Equivalence Search: start with empty 
PDAG, add best edge until local max, then delete 
best edge till local max. If M->infty, this will 
provably find optimal PDAG given any consistent 
scoring fn.

• Performing local updates to score of a PDAG is 
harder.
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Bayes model averaging

• When the sample size is small, the posterior p(G|D) 
gives support to multiple (non equivalent) models

• We should perform BMA when performing 
prediction

• And when computing E[f(G)|D], where f(G) is some 
feature, eg f(G)=there is an edge X->Y in G, 
average path length in G
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MC3

• Markov Chain Monte Carlo Model Composition

• Use MH in space of DAGs, with proposal = uniform 
over neighbors (add/delete/reverse edge)

• Does not mix well in more than ~10 dimensions. 
Also, posterior gets more peaky as sample size 
increases (can use parallel tempering).
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MH on Alarm

N=1000

N=500

Init empty Init local search

Edge marginals
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MH in order space

• Given a known order, we can integrate over all 
possible graphs by summing over all parents sets

• Hence use MH to sample over orders, using 
traveling-salesman like moves

Target distribution
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Posterior features

• Given samples from p(<|D) we compute

• Parent features

• Edge features

• General features: sample G given <, then use
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RB MH on Alarm
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Dynamic programming

• Koivisto & Sood showed how to compute all edge 
marginals p(Gij=1|D) exactly in O(n 2^n) time

• Requires special (“modular”) prior p(G) which can 
be unnatural (see later)
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Comparison of approaches

5 sec (d=10) to 5 mins (d=20)

∑

ij

|P̂ (Gij = 1|D)− P (Gij = 1|D)|
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Error floor due to wrong p(G)

Error due to wrong p(G)
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p(G) needed by DP and MH+order

• Joint (“modular”) prior on G and  ≺

• Induced prior on p(G)

p(G,≺) =
1

Z

d∏

i=1

ρi(Gi)qi(≺i)I(G,≺ is valid)

unordered set of parents ordering of predecessors

p(G) =
∑

≺

p(G,≺)
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Graphs consistent with more orderings are 
more probable

• Effect will not get erased even with infinite data, since
both models are likelihood equivalent
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unordered set of parents ordering of predecessors, qi ∝ 1

p(G) =
∑

≺

1

Z

d∏

i=1

ρi(Gi)qi(≺i)I(G,≺ is valid)

Problems with induced p(G)

ρi(Gi) = 1 ρi(Gi) =

(
d− 1

|Gi|

)−1

• Prior is highly non-uniform
• Effect will not get erased even with infinite data
•Cannot encode arbitrary prior knowledge in p(G)
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Solutions to p(G) problem

• Importance sampling -- Ellis & Wong ’06 
– Use MH+order as proposal 
– #P-hard to compute exact IS weights

w(G) =
p∗(G)

p(G)
=

1
Z

∏
i ρ
∗

i (Gi)∑
≺

1
Z

∏d

i=1 ρi(Gi)qi(≺i)I(G,≺ is valid)

=
1∑

≺
I(consistent(≺, G))
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Solutions to p(G) problem

• Importance sampling -- Ellis & Wong ’06 

• Metropolis Hastings -- this paper
– Use DP marginals as proposal for MH
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MH with DP+local proposal

• Compute pij=p(Gij=1|D) offline using DP  

• wp β, we use a standard local move
• wp 1-β, sample a new graph ~ pij

• If β=0 (global) independence sampler
• If β=1 (local) standard proposal
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Why MH?

• DP alone has 3 problems
1. Modular prior p(G)
2. Cannot compute prob. of “long range” features (e.g., 

path from i to j), only edge features.
3. Very slow to compute predictive density

p(x|D) = ∑G p(x|G) p(G|D)
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MH allows any p(G)

• Propose using q(G’|G)

• Accept wp α

α = min

(
1,
p(D|G′)p(G′)

p(D|G)p(G)

q(G|G′)

q(G′|G)

)
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Modular vs uniform p(G)

5 node “cancer” network Markov equivalence class

Modular prior
biases posterior 
even as |D| →∞

MH fixes bias
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T-cell signaling network

“Causal Protein-Signaling Networks derived from Multiparameter Single-Cell Data”,
Sachs, Perez, Pe’er, Lauffenberger, Nolan, Science 2005

Protein phosphorylation (d=11, N=5400) Ground truth DAG

Exact P(Gij=1|D)ROC
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Informative p(G)

“Reconstructing Gene Regulatory Networks with Bayesian Networks by Combining Expression Data
with Multiple Sources of Prior Knowledge”, Werhli & Husmeier, 2007

Ground truth DAG

P(Gij=1|D)ROC

Protein phosphorylation (d=11, N=5400)
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Sampling G allows any features

• DP can only compute posterior of features that are 
functions of a local family topology

• By sampling DAGs, we can compute E[f(G)] for arbitrary 
features f

A B

C

A

C

Specific parents ∃ Edge A->C

A in Markov blanket of C

A B

C

A

C

A

C

A

B

C

Possible Not possible

A

B
C

∃ Causal path A->B, mediated by C

∃ Directed path A -> B
A

B

C

D

A

B

C

D

E

F
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Posterior features

• We sampled N=10k data from d=20 node graph 
with random CPTs

• Compute p(edge i->j|D) and p(path i->j|D)

“child” network
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AUC for p(feature=1|D)

Area under the ROC curve after 200 seconds of wall clock time*

β=0.1β=1 β=0 β=0.1β=1 β=0

All algorithms were implemented in Matlab/C and run on a standard desktop
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Sampling G allows fast prediction

• DP can compute the marginal likelihood of data p(D)
• Hence can compute the predictive likelihood of a test point x:

• Since DP integrates out G, we have to keep D,
and re-run algorithm for each x, which is very slow

• Our approach: keep a sample of Gs∼ p(G|D) and compute 
posterior mean parameters      for each Gs

p(x|D) = p(x,D)
p(D)

p(x|D) =
∑

G

∫

θ

p(x|G, θ)p(θ|G,D)p(G|D) ≈
1

M

M∑

s=1

p(x|Gs, θ
s
)

θ
s
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US census data (d=15,N=49k)

1. Exact BMA (but takes 350h!)
2. MH-DP hybrid β=0.1
3. Plug-in MAP-optimal DAG, MH-DP global β=0, MH-order
4. MH-local β=1
5. Gibbs
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Why MH+DP?

– MH + DP mixes faster than MH + other
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Edge marginal error vs time

∑
ij |p(Gij = 1|D)− p̂t(Gij = 1|D)|

d=5 cancer network
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Traceplots of log p(G,D)

US census (d=14, N=49k)
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Repeatability

MH+DP (hybrid) MH-localMH-order

US census (d=15, N=49k)

We plot edge marginals after two runs from different random starting points
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Stochastic search

• MCMC approximates p(M=m|D) by counting how 
many samples are equal to m.

• Since we can compute p(m,D) exactly, we don’t 
need to visit m more than once. We can 
approximate

• It is better to rapidly move through model space, 
covering as much posterior mass as possible.

• Shotgun stochastic search (SSS), mode oriented 
stochastic search (MOSS)

p(m|D) ≈
p(m,D)∑

m′inS p(m
′,D)
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Occam’s window

• Goal: compute level set of the posterior 

• M^* is unknown, so approximate this by

• Can find this by beam search, throwing out models 
that are worse than α time the current best 
(Raftery, Dobra)

C(α) = {m : p(m|D) ≥ αp(m∗|D)}

Ĉ(α) = {m : p(m|D) ≥ αp(m̂∗|D)}

m̂∗ = argmax
m∈S

p(m|D)


