Outline

• Overview of structure learning
• Constraint based approach (18.2)
• Scoring functions (18.3)
Overview of structure learning

- Goals: density estimation and knowledge discovery
- Can only learn graph up to Markov equivalence
- 2 main approaches:
 - Find PDAG which is an I-map of the empirical distribution, using conditional independence test (eg χ^2) at the 5% level in lieu of oracle
 - Find MAP DAG by defining a scoring and search through DAG space
- Can also do Bayes model averaging over DAGs to get posterior of features of interest eg predictive density, edge/path marginals, etc
Assumptions behind constraint based

• Each node has a fan-in of at most d
• We have a CI oracle $X \perp Y \mid Z$ that gives correct results for conditioning sets up to size $2d+2$
• P^* is faithful to G^*
• Def 3.3.4. A distribution P is faithful to G if, whenever $X \perp Y \mid Z$ in $I(P)$, we have $dsep_G(X;Y\mid Z)$
i.e., there are no “non-graphical” independencies buried in the parameters
Sec 3.4, from Lecture 2

So far, we have discussed how to derive distributions from graphs.

But how do we get the DAG?

Assume we have access to the true distribution P, and can answer questions of the form

$$P \models X \perp Y \mid Z$$

For finite data samples, we can approximate this oracle with a CI test – the frequentist approach to graph structure learning (see ch 18)

What DAG can be used to represent P?
Minimal I-map

• The complete DAG is an I-map for any distribution (since it encodes no CI relations)

• Def 3.4.1. A graph K is a minimal I-map for a set of independencies I if it is an I-map for I, and if the removal of even a single edge from K renders it not an I-map.

• To derive a minimal I-map, we pick an arbitrary node ordering, and then find some minimal subset U to be X_i’s parents, where

$$X_i \perp \{X_1, \ldots, X_{i-1}\} \setminus U | U$$

• (K2 algorithm replace this CI test with a Bayesian scoring metric: sec 18.4.2).
Algorithm 3.2 Procedure to build a minimal I-map given an ordering

Procedure Build-Minimal-I-Map (X_1, \ldots, X_n \quad \text{// an ordering of random variables in } \mathcal{X}
\mathcal{I} \quad \text{// Set of independencies}
)

1. Set \mathcal{G} to an empty graph over \mathcal{X}
2. for i = 1, \ldots, n
3. \quad U \leftarrow \{X_1, \ldots, X_{i-1}\} \quad \text{// } U \text{ is the current candidate for parents of } X_i
4. \quad \text{for } U' \subseteq \{X_1, \ldots, X_{i-1}\}
5. \quad \quad \text{if } U' \subseteq U \text{ and } (X_i \perp \{X_1, \ldots, X_{i-1}\} - U' \mid U') \in \mathcal{I} \text{ then}
6. \quad \quad \quad U \leftarrow U'
7. \quad \quad \text{// At this stage } U \text{ is a minimal set satisfying } (X_i \perp \{X_1, \ldots, X_{i-1}\} - U \mid U)
8. \quad \quad \text{// Now set } U \text{ to be the parents of } X_i
9. \quad \text{for } X_j \in U
10. \quad \quad \text{Add } X_j \rightarrow X_i \text{ to } \mathcal{G}
11. \quad \text{return } \mathcal{G}
Effect of node ordering

- “Bad” node orderings can result in dense, unintuitive graphs.
- Eg L,S,G,I,D. Add L. Add S: must add L as parent, since $P \not\perp L \perp S$. Add G: must add L,S as parents.

Figure 8.8: Three minimal I-maps for $P_{visdist}$, induced by different orderings: [a] D,I,S,G,L [b] L,S,G,I,D [c] L,D,S,I,G
Dealing with node ordering

• Search over orders
• Work with PDAGs
Perfect maps

• Minimal I-maps can have superfluous edges.
• Def 3.4.2. Graph K is a perfect map for a set of independencies I if \(I(K) = I \). K is a perfect map for P if \(I(K) = I(P) \).
• Not all distributions can be perfectly represented by a DAG.
• Eg let \(Z = \text{xor}(X,Y) \) and use some independent prior on \(X, Y \). Minimal I-map is \(X \rightarrow Z \leftarrow Y \). However, \(X \perp Z \) in \(I(P) \), but not in \(I(G) \).
• Eg. \(A \perp C \mid \{B,D\} \) and \(B \perp D \mid \{A,C\} \), A dep \(\mid B,C \), etc
Finding perfect maps

• If P has a perfect map, we can find it in polynomial time, using an oracle for the CI tests.

• We can only identify the graph up to I-equivalence, so we return the PDAG that represents the corresponding equivalence class.

• The method has 3 steps (see sec 3.4.3)
 – Identify undirected skeleton
 – Identify immoralities
 – Compute eclass (compelled edges)

• This algorithm has been used to claim one can infer causal models from observational data, but this claim is controversial

Identifying the undirected skeleton

- Initially connect all node pairs
- Remove an edge if we find a U st $X_i \perp X_j | U$

Lemma 3.4.8: Let G^* be an I-map of a distribution P, and let X and Y be two variables that are not adjacent in G^*. Then either $P \models (X \perp Y | \text{Pa}_X^{G^*})$ or $P \models (X \perp Y | \text{Pa}_Y^{G^*})$.

- Hence we can restrict our search for witnesses U to the sets and

\[
U \subseteq \mathcal{X} - \{X_i, X_j\} - \text{Nb}^{\mathcal{H}}_{X_i},
\]

\[
U \subseteq \mathcal{X} - \{X_i, X_j\} - \text{Nb}^{\mathcal{H}}_{X_j}.
\]
Algorithm 3.3 Algorithm for recovering undirected a distribution P for which G^* is a P-map

Procedure Build-PMap-Skeleton (

$\mathcal{X} = \{X_1, \ldots, X_n\}$,

P,

// Set of random variables

// Distribution over \mathcal{X}

// Bound on witness set

1. Let \mathcal{H} be the complete undirected graph over \mathcal{X}
2. for X_i, X_j in \mathcal{X}
3. \quad $U_{X_i, X_j} \leftarrow \emptyset$
4. for $U \in \text{Witnesses}(X_i, X_j, \mathcal{H}, d)$
5. // Consider U as a witness set for X_i, X_j
6. if $P \models (X_i \perp X_j \mid U)$ then
7. \quad $U_{X_i, X_j} \leftarrow U$
8. Remove $X_i \! - \! X_j$ from \mathcal{H}
9. break
10. return $(\mathcal{H}, \{U_{X_i, X_j} : i, j \in \{1, \ldots, n\}\}$

This algorithm will recover the correct skeleton given that G^* is a P-map of P and has bounded indegree d. If P does not have a P-map, then the algorithm can fail; see Exercise 3.22. This algorithm has complexity of $O(n^{d+2})$ since we consider $O(n^2)$ pairs, and for each perform $O((n - 2)^d)$ independence tests. We greatly reduce the number of independence tests by ordering potential witnesses accordingly, and by aborting the inner loop once we find a witness for a pair (after line 9). However, for pairs of variables that are directly connected in the skeleton, we still need to evaluate all potential witnesses.
Identifying immoralities

Proposition 3.4.9: Let G^* be a P-map of a distribution P, and let X, Y and Z be variables that form an immorality $X \rightarrow Z \leftarrow Y$. Then, $P \not\models (X \perp Y \mid U)$ for any set U that contains Z.

Proposition 3.4.10: Let G^* be a P-map of a distribution P, and let the triplet X, Y, Z be a potential immorality in the skeleton of G^*, such that $X \rightarrow Z \leftarrow Y$ is not in G^*. If U is such that $P \models (X \perp Y \mid U)$, then $Z \in U$.

Combining these two results, we see that a potential immorality $X \leftarrow Z \rightarrow Y$ is an immorality if and only if Z is not in the witness set(s) for X and Y. That is, if $X \leftarrow Z \rightarrow Y$ is an immorality, then Proposition 3.4.9 shows that Z is not in any witness set U; conversely, if $X \leftarrow Z \rightarrow Y$ is not an immorality, the Z must be in every witness set U. Thus, we can use the specific witness set $U_{X,Y}$ that we recorded for X, Y in order to determine whether this triplet is an immorality or not: we simply check whether $Z \in U_{X,Y}$. If $Z \not\in U_{X,Y}$, then we declare the triplet an immorality. Otherwise, we declare that it is not an immorality. The Mark-Immoralities procedure shown in Algorithm 3.4 summarizes this process.

```
1 \textbf{K} \leftarrow S
2 \textbf{for } X_i, X_j, X_k \textbf{ such that } X_i \leftarrow X_j \leftarrow X_k \in S \textbf{ and } X_i \leftarrow X_k \not\in S
3 \quad \text{// } X_i \leftarrow X_j \leftarrow X_k \text{ is a potential immorality}
4 \quad \textbf{if } X_j \not\in U_{X_i, X_k} \textbf{ then}
5 \quad \quad \text{Add the orientations } X_i \rightarrow X_j \text{ and } X_j \leftarrow X_k \text{ to } \textbf{K}
6 \quad \textbf{return } \textbf{K}
```
Compute PDAG

- Skeleton plus immoralities defines equiv class
- But we might want to orient as many edges as possible, not just those in immoralities

Definition 3.4.11: Let G be a DAG. A chain graph K is a class PDAG of the equivalence class of G if shares the same skeleton as G, and contains a directed edge $X \rightarrow Y$ if and only if all G' that are I-equivalent to G contain the edge $X \rightarrow Y$.8
Overall PC algorithm

Algorithm 3.5 Procedure for finding the class PDAG that characterizes the P-map of a distribution P.

Procedure Build-PDAG (
\[\mathcal{X} = \{X_1, \ldots, X_n\} \] // A specification of the random variables
\[P \] // Distribution of interest
)

\[S, \{U_{X_i,X_j}\} \leftarrow \text{Build-PMap-Skeleton}(\mathcal{X}, P) \]
\[\mathcal{K} \leftarrow \text{Find-Immoralities}(\mathcal{X}, S, \{U_{X_i,X_j}\}) \]

while not converged

Find a subgraph in \mathcal{K} matching the left-hand side of a rule $R1 \ R3$

Replace the subgraph with the right-hand side of the rule

return K

Theorem 3.4.14: Let P be a distribution that has a P-map \mathcal{G}^*, and let \mathcal{K} be the PDAG returned by Build-PDAG(\mathcal{X}, P). Then, \mathcal{K} is a class PDAG of \mathcal{G}^*.

$n=$#nodes, $d=$fanin, complexity = $O(n^{d+2})$
One error in a CI test can propagate through whole structure – not robust
Can choose thresholds to control the FDR

Score functions

- We can treat model selection as an optimization problem: \(\arg \max \text{score}(G, D) \)
- ML score:
 \[
 \text{score}_L(G : D) = \ell(\langle G, \hat{\theta}_G \rangle : D)
 \]
- Obviously this will prefer the fully connected graph
- But if we limit the fan-in (eg restrict attention to simple trees), this can be useful
ML score and Mutual information

- Consider G₀: X, Y and G₁: X→Y

\[
\text{score}_L(G₀ : D) = \sum_m \log \hat{\theta}_x[m] + \log \hat{\theta}_y[m]
\]

\[
\text{score}_L(G₁ : D) = \sum_m \log \hat{\theta}_x[m] + \log \hat{\theta}_y[m] | x[m]
\]

\[
\text{score}_L(G₁ : D) - \text{score}_L(G₀ : D) = \sum_m \log \hat{\theta}_y[m] | x[m] - \log \hat{\theta}_y[m]
\]

\[
\text{score}_L(G₁ : D) - \text{score}_L(G₀ : D) = \sum_{x,y} M[x,y] \log \hat{\theta}_y|x - \sum_y M[y] \log \hat{\theta}_y
\]

\[
\text{score}_L(G₁ : D) - \text{score}_L(G₀ : D) = M \sum_{x,y} \hat{P}(x,y) \log \frac{\hat{P}(y | x)}{\hat{P}(y)} = M \cdot I_{\hat{P}}(X; Y)
\]

Proposition 18.3.1: The likelihood score decomposes as follows:

\[
\text{score}_L(G : D) = M \sum_{i=1}^n I_{\hat{P}}(X_i ; \text{Pa}_{\hat{G}}^Q(X_i)) - M \sum_{i=1}^n H_{\hat{P}}(X_i)
\]
Bayesian score

Defined as log marginal likelihood plus log prior
Log $p(G)$ is constant whereas log $p(D|G)$ grows linearly with nsamples
Log $p(D|G)$ offers automatic complexity control – Bayesian Occam’s razor

\[
\text{score}_B(G : D) = \log P(D \mid G) + \log P(G)
\]

\[
P(D \mid G) = \int_{\Theta_G} P(D \mid \theta_G, G)P(\theta_G \mid G)d\theta_G
\]

\[
P(D \mid G) = \prod_{m=1}^{M} P(\xi[m] \mid \xi[1], \ldots, \xi[m-1], G)
\]

\[
\frac{1}{M} \log P(D \mid G) \approx E_{P*}[\log P(X \mid G, D)]
\]
Expected log pred lik vs avg log marg lik
Computation of marginal likelihood

• For a Dirichlet-multinomial we have

\[
P(x[1], \ldots, x[M]) = \frac{\Gamma(\alpha)}{\Gamma(\alpha + M)} \cdot \prod_{i=1}^{k} \frac{\Gamma(\alpha_i + M[x^i])}{\Gamma(\alpha_i)}.
\]

• For a DAG X->Y we have

\[
P(D | \mathcal{G}_{X-Y}) = \left(\int_{\theta_X} P(\theta_X | \mathcal{G}_{X-Y}) \prod_{m} P(x[m] | \theta_X, \mathcal{G}_{X-Y}) d\theta_X \right)
\]

\[
\left(\int_{\theta_Y|x^0} P(\theta_Y|x^0 | \mathcal{G}_{X-Y}) \prod_{m: x[m]=x^0} P(y[m] | \theta_Y|x^0, \mathcal{G}_{X-Y}) d\theta_Y|x^0 \right)
\]

\[
\left(\int_{\theta_Y|x^1} P(\theta_Y|x^1 | \mathcal{G}_{X-Y}) \prod_{m: x[m]=x^1} P(y[m] | \theta_Y|x^1, \mathcal{G}_{X-Y}) d\theta_Y|x^1 \right)
\]

• For CPTs with dirichlet priors: BDe score

\[
P(D | \mathcal{G}) = \prod_{i} \prod_{u_i \in Var(Pa_{\mathcal{G}})} \frac{\Gamma(\alpha_{X_i|u_i}^{\mathcal{G}})}{\Gamma(\alpha_{X_i|u_i}^{\mathcal{G}} + M[u_i])} \prod_{x_i^j \in val(X_i)} \left[\frac{\Gamma(\alpha_{x_i^j|u_i}^{\mathcal{G}} + M[x_i^j, u_i])}{\Gamma(\alpha_{x_i^j|u_i}^{\mathcal{G}})} \right]
\]
Asymptotic approximations to Bayesian score

• We have

\[
\text{Thm 18.3.4: If we use a Dirichlet parameter prior for all parameters in our network, then, as } M \to \infty, \text{ we have that:}
\]

\[
\log P(\mathcal{D} | \mathcal{G}) = \ell(\hat{\theta}_g : \mathcal{D}) - \frac{\log M}{2}\text{Dim}[\mathcal{G}] + O(1)
\]

where \text{Dim}[\mathcal{G}] is the number of independent parameters in \mathcal{G}.

\[
\text{score}_{BIC}(\mathcal{G} : \mathcal{D}) = \ell(\hat{\theta}_g : \mathcal{D}) - \frac{\log M}{2}\text{Dim}[\mathcal{G}]
\]

\[
\text{score}_{BIC}(\mathcal{G} : \mathcal{D}) = \sum_{i=1}^{n} I_p(X_i; \text{Pa}_{X_i}) - \sum_{i=1}^{n} H_p(X_i) - \frac{\log M}{2}\text{Dim}[\mathcal{G}]
\]

\[
\text{MDL} = \text{BIC}
\]

\[
\text{Thm 18.3.6. BIC, MDL and Bayesian score are consistent (so score(G)=score(G*) iff G is I-equivlent to G*)}
\]
Structure priors

• $P(G)$ only matters in small sample setting

• Penalized number of edges: $P(G) \propto e^{|G|}$

• Penalize deviation from fixed prior structure
Decomposable score

- When we make local changes to a graph, we want to evaluate the score change in constant time

 Definition 18.3.8: A structure score function score is decomposable if the score of a structure G can be written as

 $$\text{score}(G : D) = \sum_i \text{FamScore}(X_i | Pa_i^G : D)$$

- **BIC score is decomposable**

 Definition 18.3.9: Let $\{P(\theta_G | G) : G \in \mathcal{G}\}$ be a set of parameter priors that satisfy global parameter independence. The prior satisfies Parameter modularity if for each G, G' such that $\text{Pa}_i^G = \text{Pa}_i^{G'} = U$, then $P(\theta_{X_i|U} | G) = P(\theta_{X_i|U} | G')$.

- Thm 18.3.10. parameter modularity \Rightarrow BDe score is decomposable

- Defn: Structural modularity if $p(G)$ decomposes

- Thm 18.3.10. param & struct modularity \Rightarrow Bayesian score decomposable
Score equivalence

• Def 18.3.11. Score() is score equiv if
score(G)=score(G’) if G, G’ are l-equiv

• Thm 18.3.12. Likelihood and BIC scores are score
equiv.

• BDe score is only score equivalent if we set the
Dirichlet hyper-parameters as follows

\[\alpha_{x_i|\text{pa}_i} = \alpha \cdot P'(x_i, \text{pa}_i). \]

• Eg if P’ is a uniform prior network, then

\[\theta_{ijk} \overset{\text{def}}{=} p(X_i = k|X_{\pi_i} = j) \]
\[\theta_{ijk} \sim \text{Dir}(\alpha_{ijk}) \]
\[\alpha_{ijk} = \frac{1}{q_i r_i} \]

\(\alpha_{i\phi\kappa} = 1 \) (K2 prior) is not score equiv

thetaY \sim \text{Dir}(1,1)
thetaY|X=1 \sim \text{Dir}(1,1)
thetaY|X=0 \sim \text{Dir}(1,1)
Decomposable score

- When we make local changes to a graph, we want to evaluate the score change in constant time.

Definition 18.3.8: A structure score function is decomposable if the score of a structure G can be written as

$$\text{score}(G : \mathcal{D}) = \sum_i \text{FamScore}(X_i | Pa_i^G : \mathcal{D})$$

- BIC score is decomposable.
- We say a prior satisfies structural modularity if

$$P(G) \propto \prod_i P(Pa_{X_i} = Pa_{X_i}^G)$$

Definition 18.3.9: Let $\{P(\theta_G | G) : G \in \mathcal{G}\}$ be a set of parameter priors that satisfy global parameter independence. The prior satisfies Parameter modularity if for each G, G' such that $Pa_{X_i}^G = Pa_{X_i}^{G'} = U$, then $P(\theta_{X_i|U} | G) = P(\theta_{X_i|U} | G')$.

- Thm 18.3.10. Structural & parameter modularity \Rightarrow Bayesian score is decomposable.