Stat 521A
Lecture 2
Outline

• DAGs
 – global Markov (3.3)
 – deriving graphs from distributions (3.4)

• UGs
 – Global Markov property (4.3.1)
 – Parameterization (4.2)
 – Gibbs distributions, energy based models (4.4.1)
 – Local and pairwise Markov properties (4.3.2)
 – From distributions to graphs (4.3.3)
Active trails

• Whenever influence can flow from X to Y via Z, we say that the trail $X <-> Y <-> Z$ is active.
• Causal trail: $X \rightarrow Z \rightarrow Y$. Active iff Z not obs.
• Evidential trail: $X \leftarrow Z \leftarrow Y$. Active iff Z not obs.
• Common cause: $X \leftarrow Z \rightarrow Y$. Active iff Z not obs.
• Common effect: $X \rightarrow Z \leftarrow Y$. Active iff either Z or one of its descendants is observed.
• Def 3.3.1. Let G be a BN structure, and $X_1 <-> \ldots <-> X_n$ be a trail in G. Let E be a subset of nodes. The trail is active given E if
 • Whenever we have a v-structure $X_{i-1} \rightarrow X_i \leftarrow X_{i+1}$, then X_i or one of its desc is in E.
 • No other node along the trail is in E.

Example

- $D \rightarrow G \leftarrow I \rightarrow S$ not active for $E=\{}$
- $D \rightarrow G \leftarrow I \rightarrow S$ is active for $E=\{L\}$
- $D \rightarrow G \leftarrow I \rightarrow S$ not active for $E=\{L,I\}$
- Non-monotonic
d-separation

- Def 3.3.2, We say X and Y are d-separated given Z, denoted $d\text{-sep}_G(X;Y|Z)$, if there is no active trail between any node in X to any node in Y, given Z. The set of such independencies is denoted by:

$$I(G) = \{X \perp Y|Z : d\text{sep}_G(X;Y|Z)\}$$

- Thm 3.3.3. (Soundness of dsep). If P factorizes according to G, then $I(G) \subseteq I(P)$.

- False thm (completeness of dsep). For any P that factorizes according to G, if $X \perp Y|Z$ in $I(P)$, then $d\text{esp}_G(X;Y|Z)$ (i.e., P is faithful to G)
Def 3.3.4. A distribution \(P \) is faithful to \(G \) if, whenever \(X \perp Y \mid Z \) in \(I(P) \), we have \(\text{dsep}_G(X;Y|Z) \) i.e., there are no “non-graphical” independencies buried in the parameters.

A simple unfaithful distribution, with Imap A->B:

<table>
<thead>
<tr>
<th></th>
<th>b^0</th>
<th>b^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^0</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>a^1</td>
<td>0.4</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Such distributions are “rare”

Thm 3.3.7. For almost all distributions \(P \) that factorize over \(G \) (ie except for a set of measure zero in the space of CPD parameterizations), we have that \(I(P)=I(G) \)
Markov equivalence

• A DAG defines a set of distributions. Different DAGs may encode the same set and hence are indistinguishable given observational data.

• Def 3.3.10. DAGs G1 and G2 are I-equivalent if \(I(G1) = I(G2) \). The set of all DAGs can be partitioned into I-equivalence classes.

• Def 3.4.11. Each can be represented by a class PDAG: only has a directed edge if every member shares that edge.
• Def 3.3.11. The skeleton of a DAG is an undirected graph obtained by dropping the arrows.
• Thm 3.3.12. If G1 and G2 have the same skeleton and the same v-structures, they are I-equivalent.
• However, there are structures that are I-equiv but do not have same v-structures (eg fully connected DAG).
• Def 3.3.13. A v-structure X->Z<-Y is an immorality if there is no edge between X and Y (unmarried parents who have a child)
• Thm 3.3.14. G1 and G2 have the same skeleton and set of immoralities iff they are I-equiv.
Examples
Markov properties of DAGs

- DF: \(F \) factorizes over \(G \)
- DG: \(I(G) \subseteq I(P) \)
- DL: \(I_l(G) \subseteq I(P) \)

Based on Jordan ch 4
Deriving graphs from distributions

• So far, we have discussed how to derive distributions from graphs.
• But how do we get the DAG?
• Assume we have access to the true distribution P, and can answer questions of the form

$$P|\equiv X \perp Y|Z$$

• For finite data samples, we can approximate this oracle with a CI test – the frequentist approach to graph structure learning (see ch 18)
• What DAG can be used to represent P?
Minimal I-map

• The complete DAG is an I-map for any distribution (since it encodes no CI relations)
• Def 3.4.1. A graph K is a minimal I-map for a set of independencies I if it is an I-map for I, and if the removal of even a single edge from K renders it not an I-map.
• To derive a minimal I-map, we pick an arbitrary node ordering, and then find some minimal subset U to be X_i’s parents, where

$$X_i \perp \{X_1, \ldots, X_{i-1}\} \ \setminus \ U | U$$

• (K2 algorithm replace this CI test with a Bayesian scoring metric: sec 18.4.2).
Effect of node ordering

- “Bad” node orderings can result in dense, unintuitive graphs.
- Eg L,S,G,I,D. Add L. Add S: must add L as parent, since $P \not
\perp S$. Add G: must add L,S as parents.
Perfect maps

- Minimal I-maps can have superfluous edges.
- Def 3.4.2. Graph K is a perfect map for a set of independencies I if I(K)=I. K is a perfect map for P if I(K)=I(P).
- Not all distributions can be perfectly represented by a DAG.
- Eg let Z = xor(X,Y) and use some independent prior on X, Y. Minimal I-map is X -> Z <- Y. However, X \perp Z in I(P), but not in I(G).
- Eg. A \perp C | \{B,D\} and B \perp D | \{A,C\}, A dep | B,C, etc
Finding perfect maps

• If P has a perfect map, we can find it in polynomial time, using an oracle for the CI tests.
• We can only identify the graph up to I-equivalence, so we return the PDAG that represents the corresponding equivalence class.
• The method* has 3 steps (see sec 3.4.3)
 – Identify undirected skeleton
 – Identify immoralities
 – Compute eclass (compelled edges)
• This algorithm has been used to claim one can infer causal models from observational data, but this claim is controversial

Global Markov property of UGs

- Def 4.3.1. The path $X_1 - \ldots - X_k$ is active given E if none of the nodes on the path are in E.
- Def 4.3.2. The global Markov assumptions associated with a UG H are

$$I(H) = \{X \perp Y | Z : \text{sep}_H(X; Y | Z)\}$$

- Eg. $A \perp C | \{B, D\}$ and $B \perp D | \{A, C\}$

Monotonic, unlike d-separation

$$\text{sep}_H(X; Y | Z) \Rightarrow \text{sep}_H(X; Y | Z') \forall Z \subset Z'$$
Parameterization

- To specify a specific distribution, we need to associate parameters (local distributions) with the graph.
- CPDs cannot be used because they are not symmetric, and the chain rule need not apply.
- Marginals cannot be used because a product of marginals does not define a consistent joint.
- Instead we multiply a product of factors (potentials), one per maximal clique, and then compute a global normalization constant Z (partition function)

$$P(A,B,C,D) = \frac{1}{Z} \phi(A,B,D) \phi(B,C,D)$$

$$Z = \sum_{\{A,B,C,D\}} \phi(A,B,D) \phi(B,C,D)$$
P(A,B,C,D) = 1/Z φ(A,B) φ(A,D) φ(C,D) φ(C,B)
Multiplying factors

- Def 4.2.2. We multiply factors by matching up corresponding dimensions

$$\Psi(X,Y,Z) = \phi_1(X,Y) \cdot \phi_2(Y,Z)$$
Factors are not marginals

• In the misconception network, the marginal on A,B is

\(a^0\)	\(b^0\)	0.13
\(a^0\)	\(b^1\)	0.69
\(a^1\)	\(b^0\)	0.14
\(a^1\)	\(b^1\)	0.04

• But the local clique potential is

\(a^0\)	\(b^0\)	30
\(a^0\)	\(b^1\)	5
\(a^1\)	\(b^0\)	1
\(a^1\)	\(b^1\)	10

• Factors are local affinities or preferences, but get combined with other terms in a non-local way
Factorization and I-maps

• Thm 4.3.3. If P factorizes over H, then H is an I-map for P, ie. $I(H) \subseteq I(P)$. (Soundness of separation.)

• Proof. Suppose Z separates X from Y. Then we can partition the factors such that

$$p(x) = \frac{1}{Z}(f(X, Z)g(Y, Z))$$

QED.

• Def 2.1.11. A distribution is positive if $P(x) > 0$ for all x.

• Thm 4.3.4 (Hammersley Clifford). If P is positive, and H is an I-map for P, then P factorizes over H:

$$p(x) = \frac{1}{Z} \prod_c \phi_c(x_c)$$
• Def 4.2.3. A Gibbs distribution is defined as

$$p(X_1, \ldots, X_n) = \frac{1}{Z} \phi_1(D_1) \times \cdots \times \phi_m(D_m)$$

• The D_i are the domains or scopes of the factors. We can infer the graph by connecting up all nodes in the same domain. If the D_i are on pairs of nodes (edges), we call it a pairwise Markov random field.

• For a complete graph, we could have one factor per edge or a single clique potential for the whole graph.
Factor graphs

- For a complete graph, we could have one factor per edge or a single clique potential for the whole graph.
- Factor graphs can distinguish these cases.
- Def 4.4.1. Square nodes = factors, ovals = rv’s.
Energy based models

- It is common to work with energies = negative log factors/ potentials (low energy = more probable)

\[\phi(D) = \exp(-\epsilon(D)) \quad p(x_1, \ldots, x_n) = 1/Z \exp[-\sum_{i=1}^{m} \epsilon_i(D_i)] \]
Ising model

• $X_i = +1$ if atom is spin up, $X_i = -1$ if spin down
• Define edge energy as
 \[\epsilon_{i,j}(x_i, x_j) = -w_{i,j}x_ix_j \]
 If spins equal (aligned), product is +1, else -1.
• $w_{\{i,j\}} = 0.5 \left(E(\text{anti-aligned}) - E(\text{aligned}) \right)$. If +ve, model aligns atoms (ferromagnetic). If –ve, spins should be different (anti-ferromagnetic).
• Define local node energy (external field) as
 \[\epsilon_i(x_i) = -u_ix_i \]
• Overall distribution
 \[p(x_1, \ldots, x_n) = \frac{1}{Z} \exp \left(\sum_{i<j} w_{i,j}x_ix_j + \sum_i u_ix_i \right) \]
Ising models capture pairwise correlation

- Energy can be written as

\[
\epsilon(x) = - \sum_{i<j} w_{i,j} x_i x_j - \sum_i u_i x_i \\
= - \frac{1}{2} x^T W x - u^T x \\
= - \frac{1}{2} (x - \mu)^T W (x - \mu) + c
\]

\[
\mu = - W^{-1} u \\
c = \frac{1}{2} \mu^T W \mu
\]
Phase transition

- The strength of the interactions is modulated by a global temperature parameter T
 \[p(x) = \frac{1}{Z} \exp \left(-\epsilon(x)/T \right) \]
- Large temperature “flattens” the energy landscape and makes the uniform distribution most probable
- Small temperature makes the distribution “peaky”
- One can compute the density of pure vs mixed state configurations as a function of T (as the number of atoms $\to \infty$). There is often a phase transition: as T exceeds a critical temperature, there is a sudden regime change.
- This has computational analogs in the mixing time of Markov chains.
Samples from an Ising model

See GibbsDemolIsing in PMTK/bookCode
Image denoising

\[p(x, y) = p(x)p(y|x) = \frac{1}{Z} \prod_{<ij>} \phi_{ij}(x_i, x_j) \prod_i p(y_i|x_i) \]

\[\text{argmax}_x P(x|y) \text{ is best guess of denoised image} \]

See GibbsDemolsing in PMTK/bookCode
Hopfield network

- A Hopfield network is a stochastic, recurrent neural network.
- It is equivalent to a fully connected Ising model.
- Weights are learned.
- Often used for associative memory/ pattern completion.
Boltzmann machine

• A Boltzmann machine is a Hopfield network (Ising model) with hidden nodes.

• A restricted Boltzmann machine (RBM) is a bipartite BM. This supports efficient block Gibbs sampling (see ch 12).
Local Markov assumption

- So far, we have defined the global Markov assumptions using simple graph separation.
- We now consider some variants.
- The boundary of a node α, $bd(\alpha)$, is all nodes which are directly connected to it.
- The closure is $cl(\alpha) = bd(\alpha) \cup \alpha$.
- Def 4.3.9. The local Markov properties of H are

$$I_l(H) = \{\alpha \perp S \setminus cl(\alpha) | bd(\alpha)\}$$

- i.e. a is indep of rest given its Markov blanket $bd(a)$.
Pairwise Markov assumption

• Def 4.3.7. The pairwise Markov independencies associated with H are

$$I_p(H) = \{\alpha \perp \beta | S \setminus \{\alpha, \beta\} : \alpha - \beta \notin H\}$$

• i.e., a is independent of b given rest if not directly connected.
Markov properties

- G: $\mathcal{I}(G) \subseteq \mathcal{I}(P)$
- L: $\mathcal{I}_l(G) \subseteq \mathcal{I}(P)$
- P: $\mathcal{I}_p(G) \subseteq \mathcal{I}(P)$

- If P is positive, all are equivalent.

Based on Jordan ch 4, thm numbers refer to Koller&Friedman
Problems caused by determinism

- If the distribution is not positive, pairwise indep does not imply local or global indep.

- Ex 4.3.15. Let P be any distribution over (X_1, \ldots, X_n). Make 3 identical copies of each variable, X_i, X_i', X_i''. Let H be the empty MRF on this expanded state space. This satisfies the pairwise Markov properties eg X_i and X_i' are independent, because the remaining nodes contain X_i''. Also, X_i and X_j are independent, because the remaining nodes contain X_i'. However, H does not satisfy local or global indep.
From distributions to graphs

• How do we derive a graph from a distribution?
• For positive distributions, there are two approaches, based on pairwise and local prop.
• Thm 4.3.17. Let P be a +ve dist. Let H be an MRF in which we add an edge X-Y for all X,Y which cannot be made independent when conditioned on any other set:

$$ P \models (X \perp Y | \mathcal{X} \setminus \{X, Y\}) $$

Then H is the unique minimal I-map for P.
From distributions to graphs

- Thm 4.3.18. Let P be a $+$ve dist. For each node X, let $\text{MB}_P(X)$ be a minimal set of nodes U rendering X indep of the rest:

$$X \perp \mathcal{X} \setminus \{X\} \setminus U | U \in I(P)$$

Add an edge X-Y for all Y in $\text{MB}_P(X)$. Then H is a unique minimal I-map for P.