Stat 521A Lecture 18

1

Outline

- Cts and discrete variables (14.1)
- Gaussian networks (14.2)
- Conditional Gaussian networks (14.3)
- Non-linear Gaussian networks (14.4)
- Sampling (14.5)

Hybrid networks

- A "hybrid" GM contains discrete and cts variables
- Except in the case that everything is all discrete or all Gaussian, exact inference is rarely possible
- The reason is that the basic operations of multiplication, marginalization and conditioning are not closed except for tables and MVNs

Gaussian networks

- We can always convert a Gaussian DGM or UGM to an MVN and do exact inference in O(d²) space and O(d³) time
- However, d can be large (eg 1000x1000 image)
- We seek methods that exploit the graph structure, that will take O(d w²) space and O(d w³) time, where w is the tree width
- In cases where w is too large, we can use loopy belief propagation, which takes O(1) space and O(d) time

Canonical potentials

 When performing VarElim or ClqTree propagation, we have to represent factors \phi(x). These may not be Gaussians, but can always be represented as exponentials of quadratics

$$X \rightarrow X$$

 $Y \rightarrow X$
 $Y \rightarrow Y \rightarrow X$
 $Y \rightarrow Y \rightarrow X$
 $Y \rightarrow Y \rightarrow Y$
 $Y \rightarrow Y \rightarrow Y$
 $Y \rightarrow Y \rightarrow$

$$C(X; K, h, g) = \exp\left(-\frac{1}{2}X^TKX + h^TX + g\right).$$

Thus, $\mathcal{N}(\mu; \Sigma) = \mathcal{C}(K, h, g)$ where:

$$K = \Sigma^{-1}$$

$$h = \Sigma^{-1}\mu$$

$$g = -\frac{1}{2}\mu^T \Sigma^{-1}\mu - \log\left((2\pi)^{n/2}|\Sigma|^{1/2}\right)$$

Operations on canonical potentials

• Multiplication

 $\mathcal{C}\left(K_{1},h_{1},g_{1}\right)\cdot\mathcal{C}\left(K_{2},h_{2},g_{2}\right)=\mathcal{C}\left(K_{1}+K_{2},h_{1}+h_{2},g_{1}+g_{2}\right)$

$$\begin{split} \phi_1(X,Y) &= \mathcal{C}\left(X,Y; \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix}, -3 \right) \quad \star \quad \phi_2(Y,Z) = \mathcal{C}\left(Y,Z; \begin{bmatrix} 3 & -2 \\ -2 & 4 \end{bmatrix}, \begin{pmatrix} 5 \\ -1 \end{pmatrix}, 1 \right). \\ \\ \vdots \\ \\ \end{bmatrix}$$

Division

$$\frac{\mathcal{C}(K_1, h_1, g_1)}{\mathcal{C}(K_2, h_2, g_2)} = \mathcal{C}(K_1 - K_2, h_1 - h_2, g_1 - g_2)$$

Operations on canonical potentials

Marginalization (requires KYY be pd)

$$\int \mathcal{C}(\boldsymbol{X}, \boldsymbol{Y}; \boldsymbol{K}, \boldsymbol{h}, \boldsymbol{g}) d\boldsymbol{Y}.$$

$$\begin{aligned} K' &= K_{\boldsymbol{X}\boldsymbol{X}} - K_{\boldsymbol{X}\boldsymbol{Y}} K_{\boldsymbol{Y}\boldsymbol{Y}}^{-1} K_{\boldsymbol{Y}\boldsymbol{X}} \\ h' &= h_{\boldsymbol{X}} - K_{\boldsymbol{X}\boldsymbol{Y}} K_{\boldsymbol{Y}\boldsymbol{Y}}^{-1} h_{\boldsymbol{Y}} \\ g' &= g + \frac{1}{2} \left(|\boldsymbol{Y}| \log(2\pi) - \log|K_{\boldsymbol{Y}\boldsymbol{Y}}| + h_{\boldsymbol{Y}}^{T} K_{\boldsymbol{Y}\boldsymbol{Y}} h_{\boldsymbol{Y}} \right). \end{aligned}$$

Conditioning (Y=y)

$$\begin{aligned} K' &= K_{XX} \\ h' &= h_X - K_{XY}y \\ g' &= g + h_Y^T y - \frac{1}{2}y^T K_{YY}y \end{aligned}$$

Kalman filter- smoother

 If you apply the FB algorithm with these new operators, you get the same results as the RTS smoother

Gaussian LBP

- If the treewidth is too large, we can pass messages on the original (pairwise) graph
- We just apply the regular BP rules with the new operators. Once can show this is equivalent to the following:

$$p(X_{1},...,X_{n}) \propto \left(-\frac{1}{2}X^{T}JX + h^{T}X\right). \qquad \delta_{i \to j}(x_{j}) = \exp\left(-\frac{1}{2}J_{i \to j}x_{j}^{2} + h_{i \to j}x_{j}\right).$$

$$\hat{J}_{i \setminus j} = J_{ii} + \sum_{k \in \mathrm{Nb}_{i} - \{j\}} J_{k \to i} \qquad J_{i \to j} = -J_{ji}\hat{J}_{i \setminus j}^{-1}J_{ji} \qquad h_{i \to j} = -J_{ji}\hat{J}_{i \setminus j}^{-1}\hat{h}_{i \setminus j}.$$

$$\hat{J}_{i} = J_{ii} + \sum_{k \in \mathrm{Nb}_{i}} J_{k \to i} \qquad \hat{\mu}_{i} = (\hat{J}_{i})^{-1}\hat{h}_{i} \qquad \hat{\sigma}_{i}^{2} = (\hat{J}_{i})^{-1}$$

Gaussian LBP

- Thm 14.2.4. If LBP converges, then the means are exact, but the variances are too small (overconfident)
- Thm. A sufficient condition for convergence is that the potentials are pairwise normalizable
- Any attractive model (all +ve correlations) is pairwise normalizable
- The method for computing the means is similar to solving a set of linear equations

Pairwise normalizable

• Def 7.3.3. A pairwise MRF with energies of the form

$$\epsilon_i(x_i) = d_0^i + d_1^i x_1 + d_2^i x_i^2$$

$$\epsilon_{ij}(x_i, x_j) = a_{00}^{i,j} + a_{01}^{i,j} x_i + a_{10}^{ij} x_j + a_{11}^{ij} x_i x_j + a_{02}^{ij} x_i^2 + a_{20}^{ij} x_j^2$$

is called pairwise normalizable if

$$d_2^i>0, orall i$$
 and $egin{pmatrix} a_{02}^{ij} & a_{11}^{ij}/2\ a_{11}^{ij}/2 & a_{20}^{ij} \end{pmatrix}$ is psd for all i,j

- Thm 7.3.4. If the MRF is pairwise normalizable, then it defines a valid Gaussian.
- Sufficient but not necessary eg.

$\left(1 \right)$	0.6	0.6
0.6	1	0.6
$\setminus 0.6$	0.6	1 /

May be able to reparameterize the node/ edge potentials to ensure pairwise normalized.

Conditional linear Gaussian networks

- Suppose all discrete nodes only have discrete parents, and all cts nodes either have discrete parents, cts parents, or no parents.
- Further, assume all cts CPDs have the form

$$p(X = x | C = \mathbf{c}, D = k) = \mathcal{N}(x | \mathbf{w}_k^T \mathbf{c}, \sigma_k^2)$$

- This is called a CLG network. It is equivalent to a mixture of MVNs, where the distribution over discrete indicators has structure, as does each covariance matrix.
- We create a canonical factor for each discrete setting of the variables in a clique.

Inference in CLG networks

- Thm 14.3.1. Inference in CLG networks is NP-hard, even if they are polytrees.
- Pf (sketch). Consider the network below. When we sum out D₁, p(X₁) is a mixture of 2 Gaussians. In general, p(X_i) is a mixture of 2ⁱ Gaussians.

Weak marginalization

- To prevent the blowup in the number of mixture components, we can project back to the class of single mixtures at each step, as in EP
- Prop 14.3.6. argmin_q KL(p|q) where q is a Gaussian has parameters (

$$\mu_i = E_p[X_i]$$

$$\Sigma_{i,j} = Cov_p[X_i; X_j]$$

• Prop 14.3.7. argmin_q KL(p,q) where p is a mixture of Gaussians is a single Gaussian with params

$$\begin{split} \mu &=& \sum_{i=1}^k w_i \mu_i \\ \Sigma &=& \sum_{i=1}^k w_i \Sigma_i + \sum_{i=1}^k w_i (\mu_i - \mu) (\mu_i - \mu)^T. \end{split}$$

M projection

Weak marginalization

Canonical vs moment form

- Weak marginalization is defined in terms of moment form
- To convert a canonical factor to moment form, we require that it represent a valid joint density
- This typically requires we pass messages from parents to children.
- Once we have initialized all factors, they can be converted to moment form.
- However, division in the backwards pass may cause some variances to become negative! (see Ex 14.3.13)
- EP is hairy!

Strong marginalization

- By using a constrained elimination order, in which we integrate out before summing out, we can ensure that the upwards pass never needs to perform weak marginalization.
- Furthermore, one can show that the downwards pass results in exact results for the discrete variables and exact 1st and 2nd moments for the cts variables (Lauritzen's "strong jtree" algorithm)
- However, the constrained elim order usually results in large discrete cliques, making this often impractical.

Non linear dependencies

- In a linear Gaussian network, the mean is a linear function of its parents.
- Now assume $X_i = f(U_i, Z_i)$, where $Z_i \sim N(0,I)$

auxiliary variables into the variables of interest. For a vector of functions $\vec{f} = (f_1, \ldots, f_d)$ and a Gaussian distribution p_0 , we use the notation $p(X_1, \ldots, X_d) = (p_0 \bigoplus \vec{f})$ to refer to the distribution that has $p(f_1(Z), \ldots, f_d(Z)) = p_0(Z)$ and 0 elsewhere.

Examples

Example 14.4.1: For example, consider a multi-variate Gaussian $p(X_1, \ldots, X_d) = \mathcal{N}(X; \mu, \Sigma)$. We define a matrix A to be a $d \times d$ matrix such that $AA^T = \Sigma$; A is often called the square root of Σ , and is guaranteed to exist whenever Σ is positive definite. In this case we can show (see Exercise 14.6) that we can redefine p as:

$$p(X) = p_0(W) \bigoplus (AW + \mu), \qquad (14.14)$$

where $p_0(W) = \mathcal{N}(W; 0, I)$, for I the identity matrix.

Example 14.4.2: As another example, consider the non-linear CPD $X \sim \mathcal{N}\left(\sqrt{Y_1^2 + Y_2^2}; \sigma^2\right)$. We can reformulate this CPD in terms of a deterministic, non-linear function, as follows: We introduce a new exogenous variable W that captures the stochasticity in the CPD. We then define $X = f(Y_1, Y_2, W)$ where $f(Y_1, Y_2, W) = \sqrt{Y_1^2 + Y_2^2} + \sigma W$.

Taylor series approx

We can linearize f and then fit a Gaussian (basis of the EKF algorithm)

As we know, if $p_0(Z)$ is a Gaussian distribution and X = f(Z) is a linear function, then p(X) = p(f(Z)) is also a Gaussian distribution. Thus, one very simple and commonly used approach is to approximate f as a linear function \hat{f} , and then define \hat{p} in terms of \hat{f} .

The most standard linear approximation for f(Z) is the Taylor series expansion around the mean of $p_0(Z)$:

$$\hat{f}(Z) = f(\mu) + \nabla f|_{\mu} Z.$$
 Can be bad if f not linear near mu (14.15)

Although the Taylor series expansion provides us with the optimal linear approximation to f, the Gaussian $\hat{p}(X) = p_0(Z) \bigoplus \hat{f}(Z)$ may not be the optimal Gaussian approximation to $p(X) = p_0(Z) \bigoplus f(Z)$.

Example 14.4.4: Consider the function $X = Z^2$, and assume that $p(Z) = \mathcal{N}(Z; 0, 1)$. The mean of X is simply $\mathbb{E}_p[X] = \mathbb{E}_p[Z^2] = 1$. The variance of X is

$$Var_p[X] = E_p[Z^2] - E_p[Z]^2 = E_p[Z^4] - E_p[Z^2]^2 = 3 - 1^2 = 2.$$

On the other hand, the first order Taylor series approximation of f at the mean value Z = 0is:

 $\hat{f}(Z) = 0^2 + (2Z)_{U=0}Z \equiv 0.$

Thus, $\hat{p}(X)$ will simply be a delta function where all the mass is located at X = 0, a very poor approximation to p.

M projection using quadrature

• Best Gaussian approx has these moments

$$\begin{split} \mathbb{E}_p[X_i] &= \int_{-\infty}^{\infty} f_i(z) p_0(z) dz \\ \mathbb{E}_p[X_i X_j] &= \int_{-\infty}^{\infty} f_i(z) f_j(z) p_0(z) dz. \end{split}$$

 Gaussian quadrature computes this integral for any W(z)>0 (here, Gaussian)

$$\int_{a}^{b} W(z)f(z)dz \approx \sum_{j=1}^{m} w_{j}f(z_{j}).$$

Unscented transform

• Pass mean and +- std in each dim through transform, and then fit Gaussian to transformed points $\int_{-\infty}^{\infty} W(z)f(z)dz \approx \left(1 - \frac{d}{\lambda^2}\right)f(0) + \sum_{i=1}^{d} \frac{1}{2\lambda^2}f(\lambda z_i^+) + \sum_{i=1}^{d} \frac{1}{2\lambda^2}f(\lambda z_i^-).$

Nonlinear GMs

- We approximate nonlinear factors by approximating them by Gaussians
- The above methods require a joint Gaussian factor, not a canonical factor – we have to pass messages in topological order, and introduce variables one at a time to use the above tricks
- Linearization is done relative to current \mu. In EP, we iterate, and re-approximate each factor in the context of its incoming messages, which provides a better approx. to the posterior.
- Pretty hairy.

Discrete children, cts parents

- C -> D arcs are useful eg thermostat turns on/off depending on temperature
- We can approximate Gaussian * logistic by a Gaussian (variational approx)
- We can combine these Gaussian factors with the other factors as usual.

Sampling

- Sampling is the easiest way to handle cts and mixed variables
- "Collapsed particles" (Rao-Blackwellisation): sample the discretes, integrate out cts analytically. Each particle has a value for D and a Gaussian over C. Good for PF or MCMC.

Non-parametric BP

- We can combine sampling and msg passing.
- We approximate factors/ msgs by samples.
- Factors are lower dimensional than full joints.
- Eg hand-pose tracking

Adaptive discretization

- We can discretize all the cts variables, then use a method for discrete vars.
- To increase accuracy, we expand the grid resolution for variables whose posterior entropy is high.
- Can use such approximations as proposal distributions for MH.