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Outline

• Cts and discrete variables (14.1)

• Gaussian networks (14.2)
• Conditional Gaussian networks (14.3)

• Non-linear Gaussian networks (14.4)
• Sampling (14.5)
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Hybrid networks

• A “hybrid” GM contains discrete and cts variables

• Except in the case that everything is all discrete or 
all Gaussian, exact inference is rarely possible

• The reason is that the basic operations of 
multiplication, marginalization and conditioning are 
not closed except for tables and MVNs
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Gaussian networks

• We can always convert a Gaussian DGM or UGM 
to an MVN and do exact inference in O(d2) space 
and O(d3) time

• However, d can be large (eg 1000x1000 image)

• We seek methods that exploit the graph structure, 
that will take O(d w2) space and O(d w3) time, 
where w is the tree width

• In cases where w is too large, we can use loopy 
belief propagation, which takes O(1) space and 
O(d) time
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Canonical potentials

• When performing VarElim or ClqTree propagation, 
we have to represent factors \phi(x). These may not 
be Gaussians, but can always be represented as 
exponentials of quadratics
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Operations on canonical potentials

• Multiplication

• Division

* 

=
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Operations on canonical potentials

Marginalization (requires KYY be pd)

Conditioning  (Y=y)
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Kalman filter- smoother

• If you apply the FB algorithm with these new 
operators, you get the same results as the RTS 
smoother
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Gaussian LBP

• If the treewidth is too large, we can pass messages 
on the original (pairwise) graph

• We just apply the regular BP rules with the new 
operators. Once can show this is equivalent to the 
following:
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Gaussian LBP

• Thm 14.2.4. If LBP converges, then the means are 
exact, but the variances are too small 
(overconfident)

• Thm. A sufficient condition for convergence is that 
the potentials are pairwise normalizable

• Any attractive model (all +ve correlations) is 
pairwise normalizable

• The method for computing the means is similar to 
solving a set of linear equations
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Pairwise normalizable

• Def 7.3.3. A pairwise MRF with energies of the form

is called pairwise normalizable if

• Thm 7.3.4. If the MRF is pairwise normalizable, 
then it defines a valid Gaussian.

• Sufficient but not necessary eg.
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Conditional linear Gaussian networks

• Suppose all discrete nodes only have discrete 
parents, and all cts nodes either have discrete 
parents, cts parents, or no parents. 

• Further, assume all cts CPDs have the form

• This is called a CLG network. It is equivalent to a 
mixture of MVNs, where the distribution over 
discrete indicators has structure, as does each 
covariance matrix.

• We create a canonical factor for each discrete 
setting of the variables in a clique.

p(X = x|C = c, D = k) = N (x|wT
k c, σ

2

k)
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Inference in CLG networks

• Thm 14.3.1. Inference in CLG networks is NP-hard, 
even if they are polytrees.

• Pf (sketch). Consider the network below. When we 
sum out D1, p(X1) is a mixture of 2 Gaussians. In 
general, p(Xi) is a mixture of 2i Gaussians.
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Weak marginalization

• To prevent the blowup in the number of mixture 
components, we can project back to the class of 
single mixtures at each step, as in EP

• Prop 14.3.6. argmin_q KL(p|q) where q is a 
Gaussian has parameters (

• Prop 14.3.7. argmin_q KL(p,q) where p is a mixture 
of Gaussians is a single Gaussian with params

M projection 
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Weak marginalization
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Canonical vs moment form

• Weak marginalization is defined in terms of 
moment form

• To convert a canonical factor to moment form, we 
require that it represent a valid joint density

• This typically requires we pass messages from 
parents to children. 

• Once we have initialized all factors, they can be 
converted to moment form.

• However, division in the backwards pass may 
cause some variances to become negative! (see Ex  
14.3.13)

• EP is hairy!
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Strong marginalization

• By using a constrained elimination order, in which 
we integrate out before summing out, we can 
ensure that the upwards pass never needs to 
perform weak marginalization.

• Furthermore, one can show that the downwards 
pass results in exact results for the discrete 
variables and exact 1st and 2nd moments for the cts
variables (Lauritzen’s “strong jtree” algorithm)

• However, the constrained elim order usually results 
in large discrete cliques, making this often 
impractical.
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Non linear dependencies

• In a linear Gaussian network, the mean is a linear 
function of its parents.

• Now assume Xi = f(Ui, Zi), where Zi ~ N(0,I)

• Examples
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Taylor series approx

• We can linearize f and then fit a Gaussian (basis of 
the EKF algorithm)

Can be bad if f not linear near mu
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M projection using quadrature

• Best Gaussian approx has these moments

• Gaussian quadrature computes this integral for any 
W(z)>0 (here, Gaussian) 
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Unscented transform

• Pass mean and +- std in each dim through 
transform, and then fit Gaussian to transformed 
points
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Nonlinear GMs

• We approximate nonlinear factors by approximating 
them by Gaussians

• The above methods require a joint Gaussian factor, 
not a canonical factor – we have to pass messages 
in topological order, and introduce variables one at 
a time to use the above tricks

• Linearization is done relative to current \mu. In EP, 
we iterate, and re-approximate each factor in the 
context of its incoming messages, which provides a 
better approx. to the posterior.

• Pretty hairy.
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Discrete children, cts parents

• C -> D arcs are useful eg thermostat turns on/off 
depending on temperature

• We can approximate Gaussian * logistic by a 
Gaussian (variational approx)

• We can combine these Gaussian factors with the 
other factors as usual.  
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Sampling

• Sampling is the easiest way to handle cts and 
mixed variables

• “Collapsed particles” (Rao-Blackwellisation): 
sample the discretes, integrate out cts analytically. 
Each particle has a value for D and a Gaussian 
over C. Good for PF or MCMC.
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Non-parametric BP

• We can combine sampling and msg passing.

• We approximate factors/ msgs by samples.
• Factors are lower dimensional than full joints.

• Eg hand-pose tracking
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Adaptive discretization

• We can discretize all the cts variables, then use a 
method for discrete vars.

• To increase accuracy, we expand the grid 
resolution for variables whose posterior entropy is 
high.

• Can use such approximations as proposal 
distributions for MH.


