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e Cts and discrete variables (14.1)

e Gaussian networks (14.2)

e Conditional Gaussian networks (14.3)
 Non-linear Gaussian networks (14.4)
« Sampling (14.5)



Hybrid networks

* A “hybrid” GM contains discrete and cts variables

 EXxcept in the case that everything is all discrete or
all Gaussian, exact inference Is rarely possible

 The reason is that the basic operations of
multiplication, marginalization and conditioning are
not closed except for tables and MVNSs



Gaussian networks

 We can always convert a Gaussian DGM or UGM
to an MVN and do exact inference in O(d?) space
and O(d?3) time

« However, d can be large (eg 1000x1000 image)

 We seek methods that exploit the graph structure,
that will take O(d w?) space and O(d w?) time,
where w Is the tree width

* |n cases where w Is too large, we can use loopy
belief propagation, which takes O(1) space and
O(d) time




Canonical potentials

 When performing VarElim or ClgTree propagation,
we have to represent factors \phi(x). These may not
be Gaussians, but can always be represented as
exponentials of quadratics
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Operations on canonical potentials

e Multiplication

C(Ki,h1.91)-C(Ka,ha.g2) =C (K1 + Ka.h1 + ha, g1 +g2)
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e Division
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Operations on canonical potentials

Marginalization (requires KYY be pd)

K’

Iix_x Ii_x}rfi}r}rfi}rx
fC[XJ;ILh.ng}. R’

h_x Iix}fﬁ}r}rh}r
g+3 (I‘F'I log(2m) —log | Kyy| + h’{rﬁ‘ﬂdw) :

Conditioning (Y=y)

K' = Ii-_x_x
K = hx —Kxvyy
- 1 .,
g = g+ h,]:.;—y — §yrfi YYU.



Kalman filter- smoother

 If you apply the FB algorithm with these new
operators, you get the same results as the RTS

smoother
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Gaussian LBP

 |f the treewidth Is too large, we can pass messages
on the original (pairwise) graph

 We just apply the regular BP rules with the new
operators. Once can show this is equivalent to the

following:
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Gaussian LBP

« Thm 14.2.4. If LBP converges, then the means are
exact, but the variances are too small
(overconfident)

 Thm. A sufficient condition for convergence is that
the potentials are pairwise normalizable

e Any attractive model (all +ve correlations) is
pairwise normalizable

 The method for computing the means iIs similar to
solving a set of linear equations
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Pairwise normalizable

 Def 7.3.3. A pairwise MRF with energies of the form

Ez(il?z) — 6 + d?’liEl + dzzx?
eij(Ts,x5) = ag) +aglz +atyz; + afwixy + agha + asyas
IS called pairwise normalizable If
i : ij ij
dy > 0,Vi  ang ( %02 a’l%j 2) is psd for all i,]
ar /2 as
« Thm 7.3.4. If the MRF Is pairwise normalizable,
then it defines a valid Gaussian.
e Sufficient but not necessary eqg.
1 0.6 0.6 May be able to reparameterize the node/

edge potentials to ensure pairwise normalized.
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Conditional linear Gaussian networks

e Suppose all discrete nodes only have discrete
parents, and all cts nodes either have discrete
parents, cts parents, or no parents.

e Further, assume all cts CPDs have the form
p(X =2|C =c,D = k) = N(z|wj ¢, 0%)

 This is called a CLG network. It Is equivalent to a
mixture of MVNSs, where the distribution over
discrete indicators has structure, as does each
covariance matrix.

e \We create a canonical factor for each discrete
setting of the variables in a clique.
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Inference in CLG networks

e Thm 14.3.1. Inference in CLG networks is NP-hard,
even If they are polytrees.

« Pf (sketch). Consider the network below. When we

sum out
general,

D, p(X,) Is a mixture of 2 Gaussians. In
n(X) is a mixture of 2! Gaussians.

p(X2) = 3 P(D2) [ p(Xa| X000 p(Xy | D)
Dy X1 Iy
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Weak marginalization

e To prevent the blowup in the number of mixture
components, we can project back to the class of
single mixtures at each step, as in EP

 Prop 14.3.6. argmin_q KL(p|g) where g is a
Gaussian has parameters (

fhi Ep [ X
E:‘__;i F-:-'Lp[.-ﬁf;'.'j{j]

 Prop 14.3.7. argmin_q KL(p,d) where p is a mixture
of Gaussians Is a single Gaussian with params
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Canonical vs moment form

 Weak marginalization is defined in terms of
moment form

e To convert a canonical factor to moment form, we
require that it represent a valid joint density

e This typically requires we pass messages from
parents to children.

 Once we have initialized all factors, they can be
converted to moment form.

 However, division in the backwards pass may
cause some variances to become negative! (see EXx
14.3.13)

 EP Is hairy!
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Strong marginalization

e By using a constrained elimination order, in which
we Integrate out before summing out, we can
ensure that the upwards pass never needs to

perform weak marginalization.

 Furthermore, one can show that the downwards
nass results in exact results for the discrete
variables and exact 1st and 2" moments for the cts
variables (Lauritzen’s “strong jtree” algorithm)

 However, the constrained elim order usually results
In large discrete cligues, making this often
Impractical.
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Non linear dependencies

 |n alinear Gaussian network, the mean iIs a linear
function of its parents.

 Now assume X = f(U,, Z;), where Z; ~ N(O,I)

—_

auxiliary variables into the variables of interest. For a vector of functions f = (f1,..., fa)
and a Gaussian distribution pg., we use the notation p(Xy, ... .- Xg) = (poP f) to refer to
the distribution that has p( f1(£), ..., fal Z)) = pol Z) and O elsewhere.

 Examples

Example 14.4.1: . For crample, consider o multi-cariote Gaussian p{X1q, ..., Xd) =
N(X:pu.X) We define a matriz A to be a d % d matriz such that AAT = X. A is of
ten ealled the square root of 2. and s guaranteed fo erist whenever X i positioe definide,

In this ease we can show (see Brereise 16) that we can redefine pous:
pIX ) = po(W) AW +p), (14.14)

where po(W) =N (W;0,1), for I the identity maotriz, |
Example 14.4.2: As another example, consider the non-linear CPDX ~ N (w,.-f Y+ Y5, r:TE).

We ean reformulate this CPL in terms of o deterministic, non-linear function, as follows:

We introduce o new erogencus variable W that coptures the stochasticity in the CPD. We

then define X = f(Y1,Ya, W) where f(Y1,Ya, W) = /YZ + Y2 + oW, m
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Taylor series approx

 We can linearize f and then fit a Gaussian (basis of

the EKF algorithm)

As we know, if pg(£) is a Gaussian distribution and X = f(Z) is a linear function, then
plX ) =plfl£))is also a Gaussian distribution. Thus, one very simple and commonly used
approach is to approximate f as a linear function JE and then define p in terms of ft

The most standard linear approximation for f(£) is the Tavlor series expansion around

the mean of pg(£):

f(Z) = flu)+ V|, Z. Can be bad if f not linear near mu
! b

Although the Taylor series expansion provides us with the optimal linear approximation
to f, the Gaussian p(X) = po(Z) P f(Z) may not be the optimal Gaussian approximation
to p(X)=po(Z)D F(Z).

Example 14.4.4: Consider the function X = Z2, and assume that p(Z) = N (Z;0,1).
The mean of X is simply Ep[X] = E, [ZE] = 1. The variance of X is

Varg[X] = Ep[22] — E,[Z]2 = E,[2Y] - E,[22] =3 -12 =2,

On the other hand, the first order Taylor series approrimation of f af the mean value £ =10

[ 31N
f(Z)=0%+ (2Z)—0Z = 0.

Thus, p(X) will simply be o delte function where all the mass is located at X =0, o very
poor approvimation to p. [ |

[14.15)
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M projection using quadrature

 Best Gaussian approx has these moments
E,[X] = f fi(z)po (2)dz

BIXX] = [ A fEms.
e (Gaussian quadrature computes this integral for any
W(z)>0 (here, Gaussian)

L ]
[ W =3 w )
a _'|'=1
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Unscented transform

e Pass mean and +- std in each dim through
transform, and then fit Gaussian to transformed
points [

d d
' R Py d AR 1 7 + 1 7 —
Wiz)fiz)dz =~ (1 — ﬁ) FO)+ il ﬁfﬁhzi )+ ;=1 ﬁf‘ﬁzi ).

Actual (sampling) Linearized (Taylor) Monomials (unscented)

G
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Nonlinear GMs

 We approximate nonlinear factors by approximating
them by Gaussians

 The above methods require a joint Gaussian factor,
not a canonical factor — we have to pass messages
In topological order, and introduce variables one at
a time to use the above tricks

e Linearization is done relative to current \mu. In EP,
we Iiterate, and re-approximate each factor in the
context of its Incoming messages, which provides a
better approx. to the posterior.

o Pretty hairy.
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Discrete children, cts parents

« C ->D arcs are useful eg thermostat turns on/off
depending on temperature

 We can approximate Gaussian * logistic by a
Gaussian (variational approx)

e We can combine these Gaussian factors with the
other factors as usual.
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Sampling

« Sampling is the easiest way to handle cts and
mixed variables

o “Collapsed particles” (Rao-Blackwellisation):
sample the discretes, integrate out cts analytically.
Each particle has a value for D and a Gaussian
over C. Good for PF or MCMC.

D, =D, ;
v
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l Ly W(J
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Non-parametric BP

 We can combine sampling and msg passing.
 We approximate factors/ msgs by samples.

e Factors are lower dimensional than full joints.
 Eg hand-pose tracking

I N
n — !
—
0 6
L

L “ $
\
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Adaptive discretization

e We can discretize all the cts variables, then use a
method for discrete vars.

 To Increase accuracy, we expand the grid

resolution for variables whose posterior entropy Is
high.

e Can use such approximations as proposal
distributions for MH.
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