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Outline

• MAP estimation (13.1)

• Exact methods (13.2-13.3)
• Approx method based on clq graph (13.4)

• Linear programming relaxation (13.5)
• Graph cuts (13.6)

• Search (13.7)
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Querying a distribution (“inference”)

• Suppose we have a joint p(X1,…,Xd). Partition the 
variables into E (evidence), Q (query), and H 
(hidden/ nuisance). We might pose the following 
queries

• Conditional probability (posterior):

• MAP estimate (H=∅)  (posterior mode)

• Marginal MAP estimate (mode of marginal post):

p(XQ|xE) ∝
∑

xH

p(XQ,xE ,xH)

x
∗

Q = argmax
xQ

p(xQ|xE) = argmax
xQ

∑

xH

p(xQ,xE ,xH)

x
∗

Q = argmax
xQ

p(xQ|xE) = argmax
xQ

p(xQ,xE)
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MAP vs marginal MAP

• Max max ≠ max sum
• Ex 2.1.12. Joint is

• Sequence of most probable states <> most 
probable sequence of states.

a∗ = argmax
a

∑

b

p(a, b) = 1

b∗ = argmax
b

∑

a

p(a, b) = 1

(a, b)∗ = argmax
a,b

p(a, b) = (0, 1)
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MMAP harder than MAP

• Thm 13.1.1. MAP for BNs is NP-hard.

• Thm 13.1.3. MMAP for BNs is complete for NPPP.
• Thm 13.1.4. MMAP for tree structured GMs is NP-

hard.
• Pf. Must sum out X before max out Y.
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VarElim for MAP

• Since max distributes over products, we can trivially 
modify the VE algorithm to compute the *scalar* 
max_x p(x).

• To find the assignment which achieves this MAP 
probability, we must do a traceback, analogous to 
the Viterbi traceback algorithm

• For the MMAP case, we can use the same 
algorithm, but with a constrained elim order (sum 
before max), which can make the problem harder
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Clq Trees for MAP

• VE is inherently sequential: it is hard to imagine 
how to make a parallel/ distributed version of the 
traceback operator

• However, we can easily compute the max-
marginals in parallel, replacing sum-product 
messages with max-product

• But how do we decode the corresponding 
assignment? Easy if each MM is unambiguous.

MaxMarg(xi) = max
x−i

p̃(x−i, xi)

∃uniquex∗i = argmax
xi

MaxMarg(xi)
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Problems of ambiguity

• Ex 13.3.7

• If we pick x1
*=1 and  x2

*=2, we don’t get (x1,x2)*

• Must break ties consistently – requires global 
traceback.



10



11

Max-product in loopy cluster graphs

• We can change the sum-product algorithm to max 
product and run it on clique graphs that are not 
trees. The result is a set of pseudo max marginals
which are max-calibrated
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Decoding pseudo max marginals

• Def 13.3.9. Let βc be the max marginals in a clique 
tree/graph. An assignment x^* is locally optimal if 

• We can label each local assignment as equal to the 
local optimum (1) or not (0). We then need to solve 
a constraint satisfaction problem (CSP). 

• Ex 13.4.2. Consider these “beliefs”:

x
∗(c) ∈ argmax

xc
βc(xc)

Max-calibrated but not locally optimal; no solution exists
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Quality of approximate solution

• Suppose the solution is locally optimal, so CSP can 
find a satisfying assignment. This is an exact MAP 
iff the clique graph is a tree with RIP.

• Suppose it is a general loopy graph. We can show 
(thm 13.4.6) that the solution is a “strong” local 
optimum, meaning that any change wrt to a large 
set of legal moves will decrease the probability.

• The legal moves including flipping states of any 
embedded subtree or single loops.
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Max product TRW

• Suppose we replace “vanilla” max-product with a 
counting number version

• Tree reweighting algorithm (TRW) uses the 
following convex counting numbers, given a 
distribution over trees T st each edge in the 
pairwise network is present in at least 1 tree

• Thm 13.4.8. If this algorithm finds a locally optimal 
solution, it is also globally optimal. (For sum-
product, TRW is just convergent.)
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Image completion
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MAP as integer program

• Let q(xr
j)=1 if clique r is in state j.

• Let ηr
j = log φr(j).

• MAP problem:

• Integer constraint: 

• Mutual exclusion constraint:

• Consistency constraint:
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LP relaxation

• Let q(xr
j) ≥ 0 instead of {0,1}.

Convex BP is solving the dual of this LP.
If the solution is integer, and there are are no ties,
then fixed points of this are exact MAP estimates.

MAP Estimation, Linear Programming and Belief Propagation with Convex Free Energies 
Yair Weiss, Chen Yanover, Talya Meltzer, UAI 2007
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BP beats CPLEX

• Convex max-product is 100-1000 times faster than 
CPLEX at finding the exact solution to certain MAP 
problems in computer vision and protein folding.

Linear Programming Relaxations and Belief Propagation - an Empirical Study 
Chen Yanover, Talya Meltzer, Yair Weiss, JMLR 2006
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Submodularity

• Let L = {0,1,…,K} be an ordered set.

• Let g: LxL -> R be a function.
• We say g is submodular iff

• Submodularity ~ convexity for discrete opt.
• Eg L = {0,1}, g is submodular iff

∀x, y ∈ L g(x ∨ y) + g(x ∧ y) ≤ g(x) + g(y)

(x ∨ y)i = min(xi, yi), (x ∧ y)i = max(xi, yi)

g(0, 0) + g(1, 1) ≤ g(0, 1) + g(1, 0)

[(0, 1) ∨ (1, 0)] = [min(0, 1),min(1, 0)] = [0, 0],

[(0, 1) ∧ (1, 0)] = [max(0, 1),max(1, 0)] = [1, 1]
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Submodular potentials

• Defn 13.6.2. A pairwise energy term on binary 
nodes is submodular if

• Example: Ising model with attractive potential

• For any binary MRF with submodular potentials, we 
can find the exact MAP in polynomial time

ǫ(1, 1) + ǫ(0, 0) ≤ ǫ(1, 0) + ǫ(0, 1)
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Graph cuts for Ising model

• Create a source and sink node, s, t.

• Add edge Xi->t with weight εi[0].
• Add edge Xi->s with weight εi[1]

• Add X_i – X_j with λij.
• Find minimal cut. All nodes on t-side of cut are in 

state 1.
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Segmentation using binary MRF
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Slide by Nilanjan Ray, from Google search
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Metric MRFs

• A metric MRF is one with K states and pairwise
potentials of the form

where \mu is a metric:

•
Hence for any v we have submodularity:

ǫi,j(vk, vl) = µ(vk, vl) ≥ 0
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Functions of label differences

• V(p,q) is 2nd order potential of the difference in the 
labels of pixels p and q

– These functions penalize big difference in label values between neighboring data

• Image restoration: want to maintain similar intensities with neighbors

Convex interactions
(minimize is P)

Robust or “discontinuity-
preserving” interactions
(minimize is NP-complete)

[veksler-phdthesis-99]
(exact)

[ishikawa-pami-03]
(exact)

[veksler-cvpr-07]
(approximate)

[boykov-pami-01]
(approximate)

(“everywhere smooth”) (“piecewise constant”)

(“piecewise smooth”,
“truncated convex”)

(“convex”)

Source: Daniel Munoz
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GC for non-binary submodular

• For non-binary models, MAP estimation is NP-hard.

• But if the potential is submodular for any pair of 
states (eg metric MRF) then we can use a greedy 
algorithm in which we make large moves

• Alpha expansion: consider setting each node to its 
current state or to state α (2-optimal).

• Alpha-beta swap: consider swapping any two 
states; energy function only need be semi-metric 
(triangle inequality not required).

Expansion Swap
(Boykov’01)
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Stereo reconstruction



29

Total variation norm

Global Optimization for First Order Markov
Random Fields with Submodular Priors
Jerome Darbon,
Discrete Applied Mathematics, 2009

TV (u) =

∫
|∇u|du

gpq(up, uq) = β|up − uq|

Graph cuts on the level sets
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Additional info

Good tutorial at ECCV’08: “MAP Estimation in Computer Vision”
Kumar, Kolhi, Zisserman, Torr
http://www.robots.ox.ac.uk/~pawan/eccv08_tutorial/index.html

“A Linear Programming Approach to Max-sum Problem: A Review”,
Tomas Werner, PAMI 2007
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Search (A.4)

• Systematic tree search – partial assignments
– Branch and bound: prune off trajectory if lower bound of 

extension higher than current best
– Particle filtering: stochastically grow partial solutions

• Local search – complete assignments
– Hill climbing, Tabu search, Beam search, simulated 

annealing
– See Holger Hoos’s class in CS

• Search methods for Marginal MAP
– Search over max, compute sum using VE (cf Rao-

Blackwellize). Use unconstrained elim order to get upper 
bound.
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Greedy hill climbing 

Instead of looking amongst all neighbors O, we can pick the
first improving one (first-ascent or best first search).
Converges to local maximum or plateau.
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Tabu search

• Once we get to a plateau, allow selection of ‘neutral’ move to a state that 
hasn’t been visited before .

• Requires lots of memory. Instead, prevent picking a move that would 
undo a recently applied operator.


