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Lecture 11
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Outline

• Forward sampling (12.1)

• Importance sampling (12.2)
• MCMC (12.3)

• Collapsed particles (12.4)
• Deterministic search (12.5)
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Monte Carlo integration

• The goal is to approximate E[f(X)] for some function 
f eg f(X) = I(Xi=k), so E[f(X)] = p(Xi=k)

• Usually we take expectations wrt p(X|e), where e is 
the evidence

• If we can draw samples X ~ p(X|e), we can 
evaluate the expectation thus:



4

Error analysis
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Forward sampling

• To sample from the prior p(x) of a DGM is easy: 
just sample each node in topological order, 
conditional on its parents

• To sample from the prior of a UGM is much harder

• Usually we want to sample from the posterior p(x|e)
• We can use forwards sampling and throw away all 

samples that are inconsistent with e; this is called 
rejection sampling (“logic sampling” in the context 
of discrete DGMs) and is very inefficient



6



7

Unnormalized importance sampling

• Often sampling from P is hard

• Suppose we sample from a proposal distribution Q 
instead. All we require is that P(x)>0 => Q(x)>0

Unbiased estimator
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Variance

• Variance of estimator given by

• Let f(X)=1. Then variance is variance of P(X)/Q(X)

• Variance will be large if Q(x) << P(x) f(x)
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Normalized importance sampling

• Often we only know P’(x) = α P(x) with unknown α
• Define

• Then
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Bias

• Biased estimator

• Eg M=1. x[1] ~ Q has wrong mean

• But bias -> 0 as 1/M since numerator and 
denominator are both unbiased
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Variance

• Variance ->0 as 1/M

• Variance of optimal estimator is
• Ratio is

• Effective sample size 
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Likelihood weighting

• Let us apply importance sampling to a DGM where 
the proposal is as follows: do forwards in the 
mutilated DGM where observed nodes are clamped 
to Z=z

• Prop 12.2.5. Weights are
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Using LW weights

• Recall that E[w(X)] = α = p(Z=z)
• Ratio likelihood weighting: run LW twice for each y

• Normalized likelihood weighting: run LW once, and 
use samples to evaluate any query

= p(y,z)/ p(z)
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Efficiency

• Although LW does not “throw away” samples that 
are inconsistent with e, it down weights them

• If the evidence is at the leaves, the samples are 
drawn from the prior and may be assigned low 
weight

• Backward importance sampling (evidence 
reversal): if X->Y=y, sample from Q(X) ∝ p(Y=y|X)

• Importance sampling does not scale well to high 
dimensions, because hard to make Q match P
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MCMC

• Markov Chain Monte Carlo constructs a Markov 
chain whose stationary distribution is equal to the 
posterior p(x|e).

• Metropolis Hastings: only need proposal Q(x’|x) 
and ability to evaluate π(x) = p(x,e) ∝ p(x|e)

• Gibbs: only need ability to sample full conditionals 
p(xi|x(-i),e)
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Metropolis Hastings algorithm

• We propose q(x’|x) and evaluate α=π(x’)/π(x)

• If α >= 1, we accept, otherwise we accept wp r
• Always accept uphill move, occasionally accept 

downhill move
• If proposal is asymmetric, need Hastings correction
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MH pseudocode
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Why MH works

• MH generates a MC with this transition matrix
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Proof cont’d
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Proposal distributions
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Proposal distributions
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Methods for choosing proposals

• Initialize chain at a local mode (found with an 
optimizer)

• Gaussian random walk, with covariance = Hessian

• Mixture of base kernels, corresponding to different 
heuristic algorithms

• Adaptive MCMC: modify Gaussian covariance 
online 
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Gibbs sampling

• Sample each node given all others, from its full 
conditional

• This is MH with the following proposal

• Acceptance rate is 100%
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Gibbs for bivariate Gaussian
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Gibbs for Ising
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BUGS

• Bayesian Updating using Gibbs Sampling
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Single vs block updates

• Gibbs does single site updating which can move 
slowly, or even get stuck (eg XOR)

• Blocked Gibbs sampling samples multiple variables 
at once



29

Accuracy 

• Even though the samples are correlated, we have a 
CLT-type result

• Autocorrelation function

(µ− µ̂)→N (0, σ2)
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Mixing time

• Mixing time is time to reach stationary distribution

Samples drawn before convergence (during burnin
phase) should be discarded
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Conductance

• Mixing time depends on eigengap, γ=λ1-λ2

• Hard to compute
• Can develop bounds based on the conductance 

(which is low if there are narrow bottlenecks in the 
state space)
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Convergence

• 2 issues
– Speeding up convergence
– Determining if convergence has happened

• Speedups: various tricks, see later
• Determining: various heuristics
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Traceplots and ACF
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EPSR

• Start 3 chains from different states, run them for a 
while, check if variance within a chain is 
comparable to variance between chains

• Can be formalized using the Rhat statistic 
(estimated potential scale reduction).

• If Rhat ~ 1.0 for a specific f(X), then it suggest that 
the chain has converged.

• Can compute Rhat for multiple features f(X).
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Simulated annealing

• Global optimization method

• Raise surface to a temperature to smooth it out/ kill 
off the non-peaks 
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Simulated annealing

• π(x) = exp(-E(x)), E(x)=energy (+ve or –ve)

• Cooling schedule
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Samples from SA
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Parallel tempering

• Run multiple chains at different temperatures

• Let them swap samples
• Lowest chain at temp=1 is used to return samples 

to user; other chains encourage global moves
• Good for multi-model posteriors
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Evolutionary Monte Carlo

• Combine ideas from genetic algorithms with MCMC

• Population is the new state space; propose moves 
that swap pieces of particles.
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GMs and MCMC

• MCMC can benefit from GMs
– To define Markov blanket for Gibbs

– To efficiently evaluate π(x’)/π(x) for MH

• GMs need MCMC for
– State estimation (Inference)
– Parameter estimation (Learnign)
– Model selection (structure learning)
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Collapsed samplers

• A collapsed sampler means analytically integrating 
out some variables and sampling the rest

• Aka Rao-Blackwellization

• Later we will see an interesting example when we 
consider RB for particle filtering

• Today, a simpler example, which will form the basis 
of a homework exercise
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Hierarchical Bayesian modeling

• Model related cancer incidence rates

p(x,n, θ, a, b) =

n∏

i=1

p(xi|ni, θi)p(θi|a, b)p(a, b) (1)

=
n∏

i=1

Bin(xi|ni, θi)Beta(θi|a, b)p(a, b) (2)
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Inference

• Gibbs sampling p(a,b,θi|D) - homework
• MH p(a,b|D) – sample a,b, integrate out theta

• Empirical Bayes (a*,b*)=arg max p(a,b|D), then 
E[thetai|a*,b*]
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MH for Missouri cancer problem

• We use mean m=a/(a+b) and K=a+b

• Beta prior on m, noninformative prior on K

• Transform to unconstrained params

• MH with diagonal Gaussian proposal
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Inference in discrete state spaces

• For a cts state space, π(x) is a pdf, so we represent 
high probability values by repeating them many 
times

• For a discrete state space (eg model search, or 
after integrating out cts), the posterior is a pmf, so 
we can evaluate p(x|e) up to a normalization 
constant. There is no need to repeat a discrete 
state to represent its probability.

• Hence it is better to rapidly visit as many states as 
possible, and never revisit a state

• Hence use stochastic/ deterministic, local/ global 
search not MCMC
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Deterministic search

• There are many (exact or approx) methods from 
the AI/ OR communities to find the top K values of 
a discrete distribution

• We approximate P(Z=z) by counting how many 
instantiations are compatible with Z=z, weighted by 
their probability

• More precisely, we have bounds on p(Z=z)
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Bounds on conditional probabilities

• We have


