1 Gaussian posterior credible interval

(Source: DeGroot)
Let \(X \sim \mathcal{N}(\mu, \sigma^2 = 4) \) where \(\mu \) is unknown but has prior \(\mu \sim \mathcal{N}(\mu_0, \sigma_0^2 = 9) \). The posterior after seeing \(n \) samples is \(\mu \sim \mathcal{N}(\mu_n, \sigma_n^2) \). (This is called a credible interval, and is the Bayesian analog of a confidence interval.) How big does \(n \) have to be to ensure
\[
p(\ell \leq \mu_n \leq u | D) \geq 0.95
\]
where \((\ell, u)\) is an interval (centered on \(\mu_n \)) of width 1 and \(D \) is the data. Hint: recall that 95% of the probability mass of a Gaussian is within \(\pm 1.96\sigma \) of the mean.

2 MAP estimation for 1D Gaussians

(Source: Jaakkola)
Consider samples \(x_1, \ldots, x_n \) from a Gaussian random variable with known variance \(\sigma^2 \) and unknown mean \(\mu \). We further assume a prior distribution (also Gaussian) over the mean, \(\mu \sim \mathcal{N}(m, s^2) \), with fixed mean \(m \) and fixed variance \(s^2 \). Thus the only unknown is \(\mu \).

1. Calculate the MAP estimate \(\hat{\mu}_{MAP} \). You can state the result without proof (see Section ??). Alternatively, with a lot more work, you can compute derivatives of the log posterior, set to zero and solve.

2. Show that as the number of samples \(n \) increase, the MAP estimate converges to the maximum likelihood estimate.

3. Suppose \(n \) is small and fixed. What does the MAP estimator converge to if we increase the prior variance \(s^2 \)?

4. Suppose \(n \) is small and fixed. What does the MAP estimator converge to if we decrease the prior variance \(s^2 \)?

3 Language modeling with the Dirichlet-multinomial model

Consider the following children’s nursery rhyme:
mary had a little lamb, little lamb, little lamb,
mary had a little lamb, its fleece as white as snow

Let us convert this (after removing punctuation marks like commas) to a string of integers using the mapping
mary = 1, had = 2, a = 3, little = 4, lamb = 5, its = 6, fleece = 7,
as = 8, white = 9, snow = 10

Thus we get
\[
D = (1, 2, 3, 4, 5, 4, 5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 10)
\]
where \(D = (X_1, \ldots, X_{20}) \) is the data and \(X_i \in \{1, \ldots, 10\} \) is the identity of the \(i \)'th word. (Thus the vocabulary has size \(K = 10 \).) Assume \(X_i \sim \text{Discrete}(\theta) \) are iid random variables, so \(p(X_i = j | \theta) = \theta_j \). Let \(p(\theta) = \text{Dir}(\theta | \alpha_1, \ldots, \alpha_{10}) \), where \(\alpha_j = 1 \) for all \(j \).
1. What is the posterior predictive distribution \(p(\tilde{X}|D) \)? (This should be a histogram of 10 numbers). (Here \(\tilde{X} \) represents a new word sampled from the distribution.)

2. What is the most probable next word in the sentence, \(\arg \max_j p(\tilde{X} = j|D) \)? (There may be more than one answer.)

3. How might this language model be improved? (Give a brief (2-3 sentence) description of any ideas you have.)

4. **MAP estimation for the Bernoulli with non-conjugate priors**

 (Source: Jaakkola)

 In the book, we discussed Bayesian inference of a Bernoulli rate parameter with the prior \(p(\theta) = \text{Beta}(\theta|\alpha, \beta) \). We know that, with this prior, the MAP estimate is given by
 \[
 \hat{\theta} = \frac{N_1 + \alpha - 1}{N + \alpha + \beta + 2}
 \]
 where \(N_1 \) is the number of heads, \(N_0 \) is the number of tails, and \(N = N_0 + N_1 \) is the total number of trials.

 1. Now consider the following prior, that believes the coin is fair, or is slightly biased towards tails:
 \[
 p(\theta) = \begin{cases}
 0.5 & \text{if } \theta = 0.5 \\
 0.5 & \text{if } \theta = 0.4 \\
 0 & \text{otherwise}
 \end{cases}
 \]
 Derive the MAP estimate under this prior as a function of \(N_1 \) and \(N \).

 2. Suppose the true parameter is \(\theta = 0.41 \). Which prior leads to a better estimate when \(N \) is small? Which prior leads to a better estimate when \(N \) is large?

5. **Bayesian linear regression in 1d with known \(\sigma^2 \)**

 (Source: Bolstad)

 Consider fitting a model of the form
 \[
 p(y|x, \theta) = \mathcal{N}(y|w_0 + w_1x, \sigma^2)
 \]
 to the data shown below:

 \[
 x = [94, 96, 94, 95, 104, 106, 108, 113, 115, 121, 131]; \quad y = [0.47, 0.75, 0.83, 0.98, 1.18, 1.29, 1.40, 1.60, 1.75, 1.90, 2.23];
 \]

 1. Compute an unbiased estimate of \(\sigma^2 \) using
 \[
 \hat{\sigma}^2 = \frac{1}{N-2} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2
 \]
 where \(\hat{y}_i = \hat{w}_0 + \hat{w}_1x_i \), where \(\hat{w} = (\hat{w}_0, \hat{w}_1) \) is the MLE.

 2. Now assume the following prior on \(w \):
 \[
 p(w) = p(w_0)p(w_1)
 \]
 Use an (improper) uniform prior on \(w_0 \) and a \(\mathcal{N}(0, 1) \) prior on \(w_1 \). Show that this can be written as a Gaussian prior of the form \(p(w) = \mathcal{N}(w|w_0, V_0) \). What are \(w_0 \) and \(V_0 \)?

 3. Compute the marginal posterior of the slope, \(p(w_1|D, \sigma^2) \), where \(D \) is the data above, and \(\sigma^2 \) is the unbiased estimate computed above. What is \(E[w_1|D, \sigma^2] \) and \(\text{var}[w_1|D, \sigma^2] \)? Show your work. (You can use Matlab if you like.)

 4. What is a 95% credible interval for \(w_1 \)?