Stat406 Spring 2010: homework 2

1 Ridge regression using SVD

Exercise 11.5 from book (p345).

2 Ridge regression with diagonal prior

Exercise 11.6 from book (p346).

3 Linear and ridge regression on prostate cancer data (Matlab)

Consider the prostate cancer dataset discussed in [HTF01]. There are 8 continuous inputs and 1 continuous response, namely lpsa, which stands for log of prostate-specific antigen. The (standardized) data is in the file prostate.mat which contains the following variables (amongst others)

I intima	7	٠.	
Listing	1	÷	:

				O			
Name	Size	Bytes	Class	Attributes			
Xtest	30x8	1920	double				
Xtrain	67x8	4288	double				
names	1x9	624	cell				
ytest	30x1	240	double				
ytrain	67x1	536	double				

1. Fit a simple linear model $\hat{y}(x) = w_0 + w_1 x_1 + \ldots + w_8 x_8$ by maximum likelihood on the training set. What coefficients w do you get? What is the mean squared error and its standard error on the test set? Turn in your numbers and code. (You should get the same results as Table 1.)

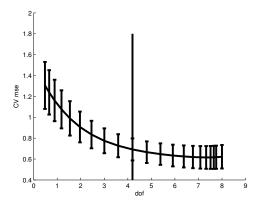


Figure 1: Cross-validation error vs dof for ridge regression on the prostate cancer data. [Based on Figure 3.6 of [HTF01].] Produced by ridgeProstateDemo, which is part of Exercise 3.

Term	LS	Ridge
intercept	2.480	2.472
lcavol	0.676	0.366
lweight	0.303	0.228
age	-0.141	-0.021
lbph	0.209	0.151
svi	0.304	0.207
lcp	-0.287	0.039
gleason	-0.021	0.044
pgg45	0.266	0.117
Test MSE	0.586	0.541
Std. error	0.184	0.170

Table 1: Coefficients and accuracy of least squares and ridge regression on the prostate cancer data. [Based on Table 3.3 of [HTF01].] Produced by ridgeProstateDemo, which is part of Exercise 3.

2. Fit the same model using ridge regression. Use 5-fold CV to select λ from the range [logspace(3, 0, 20) 0]. Use the fitCv function to compute the CV error and to pick the best model. Plot the CV error vs $df(\lambda)$ and indicate the best value of λ chosen, as in Figure 1. (You can use dofRidge to compute df.) What coefficients w do you get? What is the mean squared error and its standard error on the test set? Turn in your numbers, plot and code. (You should get similar results to Table 1.)

References

[HTF01] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer, 2001.