1 Latent semantic indexing (Matlab)

The file lsiDocuments.pdf contains 9 documents on various topics. A list of all the 460 unique words/terms that occur in these documents is in lsiWords.txt. A document by term matrix is in lsiMatrix.txt. Load this matrix and convert it to a standard term by document matrix as follows (note the transpose):

\[X = \text{load('lsiMatrix.txt')}'; \]

Also, load the words as follows

\[
\begin{align*}
\text{fid} &= \text{fopen('lsiWords.txt')} ; \\
\text{tmp} &= \text{textscan(fid,'s')} ; \\
\text{fclose(fid)} ; \\
\text{words} &= \text{tmp(1)} ;
\end{align*}
\]

1. Compute the SVD of \(X \) and make an approximation to it \(\hat{X} \) using the first 2 singular values/vectors. Plot the low dimensional representation of the 9 documents in 2D. You should get something like Figure 1.

2. Consider finding documents that are about alien abductions. If you look at lsiWords.txt, there are 3 versions of this word, term 23 ("abducted"), term 24 ("abduction") and term 25 ("abductions"). Suppose we want to find documents containing the word "abducted". Documents 2 and 3 contain it, but document 1 does not. However, document 1 is clearly related to this topic. Thus LSI should also find document 1. Create a test document \(q \) containing the one word "abducted", and project it into the 2D subspace to make \(\hat{q} \). Now compute the cosine similarity between \(\hat{q} \) and the low dimensional representation of all the documents. What are the top 3 closest matches?

![Figure 1: Projection of 9 documents into 2 dimensions.](image-url)
2 Derivation of M step for GMM

Prove that the stationary points of

\[J(\mu, \Sigma) = -\frac{1}{2} \sum_n \sum_k r_{nk} \left[\log |\Sigma_k| + (x_n - \mu_k)^T \Sigma_k^{-1} (x_n - \mu_k) \right] \]

are given by

\[r_k = \sum_n r_{nk} \]
\[\mu_k = \frac{\sum_n r_{nk} x_n}{r_k} \]
\[\Sigma_k = \frac{\sum_n r_{nk} (x_n - \mu_k^{\text{new}})(x_n - \mu_k^{\text{new}})^T}{r_k} \]

Hint: you may find the following identities helpful

\[\frac{\partial x^T A x}{\partial x} = (A + A^T)x \]
\[\frac{\partial \log |X|}{\partial X} = (X^{-1})^T = (X^T)^{-1} \]
\[\log |X| = -\log |X^{-1}| \]
\[\frac{\partial a^T X b}{\partial X} = ab^T \]

3 EM for a scale mixture of Gaussians

Consider the graphical model in Figure 2 which defines the following:

\[p(x; \theta) = \sum_{j=1}^m \sum_{k=1}^l p_j q_k N(x; \mu_j, \sigma_k^2) \]

where

\[N(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2\sigma^2}(x - \mu)^2\right] \]

and \(\theta = \{p_1, \ldots, p_m, \mu_1, \ldots, \mu_m, q_1, \ldots, q_l, \sigma_1^2, \ldots, \sigma_l^2\} \) are all the parameters. (Here \(p_j \overset{\text{def}}{=} P(J = j) \) and \(q_k \overset{\text{def}}{=} P(K = k) \) are the equivalent of mixture weights.)

[We could view this as a simple mixture model with \(m \times l \) Gaussian components indexed by \((j, k)\). However, unlike before, the parameters of the \(ml \) components cannot be set independently. For example, there are only \(m \) possible means, not \(ml \). Alternatively, we could view this as a mixture of \(m \) non-Gaussian components, where each component distribution is a scale mixture, \(p(x|j; \theta) = \sum_{k=1}^l q_k N(x; \mu_j, \sigma_k^2) \), combining Gaussians with different variances (scales). These \(m \) components are again not parameterized independently of each other.]

We will now derive a generalized EM algorithm for this model. (Recall that in generalized EM, we do a partial update in the M step, rather than finding the exact maximum.)

1. Derive an expression for the responsibilities, \(P(J_n = j, K_n = k|x_n, \theta) \), needed for the E step.

2. Write out a full expression for the expected complete log-likelihood

\[Q(\theta^{\text{new}}, \theta^{\text{old}}) = E_{\theta^{\text{old}}} \sum_{n=1}^N \log P(J_n, K_n, x_n|\theta^{\text{new}}) \]
3. Solving the M-step would require us to jointly optimize the means μ_1, \ldots, μ_m and the variances $\sigma_1^2, \ldots, \sigma_l^2$. It will turn out to be simpler to first solve for the μ_j’s given fixed σ_j^2’s, and subsequently solve for σ_j^2’s given the new values of μ_j’s. For brevity, we will just do the first part. Derive an expression for the maximizing μ_j’s given fixed $\sigma_{1,j}^2$, i.e., solve $\frac{\partial Q}{\partial \mu_j} = 0$.