Stat 406 Spring 2007: Homework 8

Out Mon 30 March, back Wed 11 April

1 Latent semanticindexing (Matlab)

Thefilel si Docunent s. pdf contains 9 documents on various topics. A list of all the 46iQue words/terms that
occur in these documents islirsi Wr ds. t xt . A document by term matrix is ihsi Matri x. t xt. Load this
matrix and convert it to a standard term by document matriok®vs (note the transpose):

X =load('IsiMatrix.txt’)’;
Also, load the words as follows

fid = fopen(’|siWrds.txt’);
tnp textscan(fid,’ %’');
fclose(fid);

words = tnp{1};

1. Compute the SVD of and make an approximation toif using the first 2 singular values/ vectors. Plot the
low dimensional representation of the 9 documents in 2D. sfmuld get something like Figure 1.

2. Consider finding documents that are about alien abdwtithnif you look atl si Wor ds. t xt , there are 3
versions of this word, term 23 (“abducted”), term 24 (“abilut’) and term 25 (“abductions”). Suppose we
want to find documents containing the word “abducted”. Doents 2 and 3 contain it, but document 1 does
not. However, document 1 is clearly related to this topicughSI should also find document 1. Create a test
document; containing the one word “abducted”, and project it into tilesbspace to makg Now compute
the cosine similarity betweepand the low dimensional representation of all the documéhiteat are the top 3
closest matches?
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Figure 1: Projection of 9 documents into 2 dimensions.



2 Derivation of M step for GMM

Prove that the stationary points of
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n k

are given by
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Hint: you may find the following identities helpful
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3 EM for ascale mixture of Gaussians
Consider the graphical model in Figure 2 which defines thieviehg:
p(a;0) = > piaeN (z; 15, 07)
j=1 k=1
where
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andd = {p1,...,PmsH1y-- s fms Qs - -5 Qs O3,y - - ., 07 + are all the parameters. (Hepe
P(K = k) are the equivalent of mixture weights.)

[We could view this as a simple mixture model with x [ Gaussian components indexed(jyk). However, unlike
before, the parameters of thel components cannot be set independently. For example, éinerenlym possible
means, notnl. Alternatively, we could view this as a mixtureof non-Gaussian components, where each component
distribution is a scale mixturey(x|j;0) = 22:1 qx N (z; pj, 02), combining Gaussians with different variances
(scales). These: components are again not parameterized independentlgbfather.]

We will now derive a generalized EM algorithm for this mod@&ecall that in generalized EM, we do a partial update
in the M step, rather than finding the exact maximum.)
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1. Derive an expression for the responsibilities,/,, = j, K,, = k|z,, 0), needed for the E step.

2. Write out a full expression for the expected completelikglihood

N
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Figure 2: Scale mixture of Gaussians

. Solving the M-step would require us to jointly optimizetmeansu, . . ., i, and the variances?, ..., o?.

It will turn out to be simpler to first solve for the;’s given fixedaj?’s, and subsequently solve foﬁ’s given
the new values ofi;’s. For brevity, we will just do the first part. Derive an expseon for the maximizing;’s

given fixedo?,, i.e., solve; 2% = 0.
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