
Stat 406 Spring 2007: Homework 8

Out Mon 30 March, back Wed 11 April

1 Latent semantic indexing (Matlab)

The filelsiDocuments.pdf contains 9 documents on various topics. A list of all the 460 unique words/terms that
occur in these documents is inlsiWords.txt. A document by term matrix is inlsiMatrix.txt. Load this
matrix and convert it to a standard term by document matrix asfollows (note the transpose):

X = load(’lsiMatrix.txt’)’;

Also, load the words as follows

fid = fopen(’lsiWords.txt’);
tmp = textscan(fid,’%s’);
fclose(fid);
words = tmp{1};

1. Compute the SVD ofX and make an approximation to it̂X using the first 2 singular values/ vectors. Plot the
low dimensional representation of the 9 documents in 2D. Youshould get something like Figure 1.

2. Consider finding documents that are about alien abductions. If If you look atlsiWords.txt, there are 3
versions of this word, term 23 (“abducted”), term 24 (“abduction”) and term 25 (“abductions”). Suppose we
want to find documents containing the word “abducted”. Documents 2 and 3 contain it, but document 1 does
not. However, document 1 is clearly related to this topic. Thus LSI should also find document 1. Create a test
documentq containing the one word “abducted”, and project it into the 2D subspace to makêq. Now compute
the cosine similarity between̂q and the low dimensional representation of all the documents. What are the top 3
closest matches?
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Figure 1: Projection of 9 documents into 2 dimensions.
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2 Derivation of M step for GMM

Prove that the stationary points of

J(µ, Σ) = − 1
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Hint: you may find the following identities helpful
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∂ log |X|
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= (X−1)T = (XT )−1 (6)

log |X| = − log |X−1| (7)
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3 EM for a scale mixture of Gaussians

Consider the graphical model in Figure 2 which defines the following:

p(x; θ) =
m

∑

j=1

l
∑

k=1

pjqkN(x; µj , σ
2

k)

where

N(x; µ, σ) =
1√
2πσ

exp[− 1

2σ2
(x − µ)2]

andθ = {p1, . . . , pm, µ1, . . . , µm, q1, . . . , ql, σ
2
1 , . . . , σ

2

l } are all the parameters. (Herepj
def
= P (J = j) andqk

def
=

P (K = k) are the equivalent of mixture weights.)
[We could view this as a simple mixture model withm × l Gaussian components indexed by(j, k). However, unlike
before, the parameters of theml components cannot be set independently. For example, thereare onlym possible
means, notml. Alternatively, we could view this as a mixture ofm non-Gaussian components, where each component
distribution is a scale mixture,p(x|j; θ) =

∑l
k=1

qkN(x; µj , σ
2

k), combining Gaussians with different variances
(scales). Thesem components are again not parameterized independently of each other.]
We will now derive a generalized EM algorithm for this model.(Recall that in generalized EM, we do a partial update
in the M step, rather than finding the exact maximum.)

1. Derive an expression for the responsibilities,P (Jn = j, Kn = k|xn, θ), needed for the E step.

2. Write out a full expression for the expected complete log-likelihood

Q(θnew , θold) = Eθold

N
∑

n=1

log P (Jn, Kn, xn|θnew)
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Figure 2: Scale mixture of Gaussians

3. Solving the M-step would require us to jointly optimize the meansµ1, . . . , µm and the variancesσ2
1 , . . . , σ2

l .
It will turn out to be simpler to first solve for theµj ’s given fixedσ2

j ’s, and subsequently solve forσ2

j ’s given
the new values ofµj ’s. For brevity, we will just do the first part. Derive an expression for the maximizingµj ’s
given fixedσ2

1:l, i.e., solve ∂Q
∂µnew = 0.
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