1 PCA vs naive Bayes for digit recognition

Download code.zip. Load the file usps_digits_479.mat (or usps_digits_479V6.mat if you have matlab 6) which contains data.Xtrain of size 300 × 256, data.ytrain of size 300 × 1, data.Xtest of size 300 × 256, data.Xytest of size 300 × 1. Each data case is a 16 × 16 image of a handwritten digit, either a 4, 7 or 9.

1. Train a classifier in which the class conditional density is based on PCA and is given by

\[p(x|y = c) = \mathcal{N}(x|\mu_c, W_c W_c^T + \sigma_c^2 I) \]

where \(W_c, \mu_c, \) and \(\sigma_c^2 \) are estimated using PPCAFit applied to the training data for class \(c \).

2. Using a uniform class prior \(p(y = c) \propto 1 \), compute the class posterior \(p(y = c|x_i) \). You can use the function ppcaLoglik and logsumexp. Plot the posterior as an an image using imagesc(posterior). You should get something like Figure 1(left).

3. Compute the MAP estimate \(\hat{y}_i = \arg \max_c p(y = c|x_i) \) for each test case. Compute the number of errors, \(\sum_i I(\hat{y}_i \neq y_i) \) for each test case. (I get 16 errors). Which test cases did you get wrong? Plot the first 9 erroneously labeled images using something like

```matlab
img = reshape(data.Xtest(i, :), [16 16]);
imagesc(img); colormap(gray); axis off
```

You should get something like Figure 1(right).

![Figure 1](image.png)

Figure 1: Left: posterior over 3 classes and 300 test cases using PPCA. Right: first 9 erroneously labeled images in test set.
Figure 2: Left: posterior over 3 classes and 300 test cases using Naive Bayes. Right: first 9 erroneously labeled images in test set.

4. Now repeat all of the above using a naive Bayes classifier

\[
p(x|y = c) = \prod_{j=1}^{d} N(x_j|\mu_{cj}, \sigma_{cj}^2)
\]

where \(d = 256\) represent the number of dimensions. I get 70 errors and Figure 2.