
Stat 406 Spring 2007: Homework 3

Out Wed 24 Jan, back Wed 31 Jan

1 Bivariate Gaussians

Let X ∼ N (µ, Σ) whereX ∈ IR2 and
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whereρ is the correlation coefficient. Show that the pdf is given by
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2 Uncorrelated does not imply independent unlessjointly Gaussian
Let X ∼ N (0, 1) andY = WX , wherep(W = −1) = p(W = 1) = 0.5. It is clear thatX andY are not
independent, sinceY is a function ofX .

1. ShowY ∼ N (0, 1). ThusX andY are both Gaussian. Hint: To show the mean is zero, use the factthatX and
W are independent. To show the varianec is 1, use the rule of iterated variance

Var (Y ) = E Var (Y |W ) + Var [E (Y |W )] (3)

2. Show Cov(X, Y ) = 0. ThusX andY are uncorrelated but dependent, even though they are Gaussian. Hint:
use the definition of covariance

Cov(X, Y ) = E (XY ) − E (X)E (Y ) (4)

and the rule of iterated expectation
E [XY ] = E [E (XY |W )] (5)

3 Likelihood ratio for Gaussians
Consider a binary classifier where the class conditional densities are MVNp(x|y = j) = N (x|µj , Σj). By Bayes
rule, we have

log
p(y = 1|x)

p(y = 0|x)
= log

p(x|y = 1)

p(x|y = 0)
+ log

p(y = 1)

p(y = 0)
(6)

In other words, the log posterior ratio is the log likelihoodratio plus the log prior ratio. For each of the 4 cases in the
table below, derive an expression for the log likelihood ratio log p(x|y=1)

p(x|y=0) , simplifying as much as possible.

Form ofΣj Cov Num parameters
Arbitrary Σj Kd(d + 1)/2
Shared Σj = Σ d(d + 1)/2
Shared, axis-aligned Σj = Σ with Σij = 0 for i 6= j d
Shared, spherical Σj = σ2I 1
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1 straight
2 magazines
3 issues
4 ray
5 enabled
6 head
7 improved
8 thread
9 libs
10 working

Figure 1: First 10 words in the vocabulary used for the NB exercise.

4 Maximum likelihood estimation of multinomials
SupposeX ∈ {1, 2} andY ∈ {1, 2, 3}. Define the joint distributionP (X = j, Y = k) = θj,k. Consider the training
dataD below, where rowi representsxi andyi:

X Y
1 1
2 2
1 3
1 1
2 2
2 3

Find the maximum likelihood estimates

θ̂jk = arg max

n
∏

i=1

p(xi, yi|θ) (7)

Hint: just build the joint2 × 3 table of counts and normalize so all numbers sum to one.

5 Naive Bayes classifier for document classification (Matlab)
[Be sure to download Data.zip, Code.zip and CodeEx.zip, andadd these folders to your matlab path.]
Consider the problem of classifying email messages posted to online discussion boards into one of two classes, one
for users of X Windows (class 1) and another for users of microsoft Windows (class 2). (This is analogous toemail
spam filtering.) There are 900 documents from each class; we divided them into training and text sets of equal
size. To save space (and time), we ran word detection on the documents, and the data available to you consist of
binary feature vectors for each document. Upon loadingData/docdata.mat the Matlab environment will contain
variablesxtrain,xtest,ytrain,ytest.
The identity of the 600 words is stored in the file ’Data/words.txt’ you can load it into matlab by saying

vocab = textread(’NB_words.txt’,’%s’);

vocab is a cell array, sovocab{t} is thet’th word. You can print out the first 10 words using

for t=1:10
fprintf(2,’%2d %20s\n’, t, vocab{t});

end

which produces the list in Figure 1.

1. Implement the following function
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function theta = NBtrain(X,Y)
% Posterior mean estimate of Naive Bayes parameters
% Input:
% X(i,j) = 1 if word j appears in document i, otherwise X(i,j)=0
% Y(i) = class label of doc i (assumed to be 1 or 2)
% Output:
% theta(j,c) = probability of word j appearing in class c

which computes the following posterior mean estimate

θ̂jc =
Njc + 1

Nc + 2
(8)

whereNjc counts the number of times wordj appears in classc, Nc is the total number of documents in class
c, and we have assumed a Beta(1,1) prior. Turn in your code.

2. Implement a function to classify each document, assuminguniform class priorsp(Y = 1) = p(Y = 2) = 0.5.

function y = NBapply(X,theta)
% X(i,j) = 1 if word j appears in document i, otherwise X(i,j)=0
% theta(j,c) = prob of word j in class c
% y(i) = most probable class for X(i,:)

Herey(i) = argmaxy p(Y = y|X(i, :)) is the most probable class label for documenti. Sincep(Y = y|~x) ∝
p(~x|Y = y) is a small number, you will need to use logs to avoid underflow.(You don’t necessarily need the
logsumexp trick, because it suffices to compute the log likelihoodp(~x|y) rather than the normalized posterior
p(y|~x), but you will need to use logs somehow!) Turn in your code.

3. UseNBtrain on the data inxtrain,ytrain. Compute the misclassification rates (i.e., the number of
documents that you mis-classified) on the training set (by using NBapply onxtrain,ytrain) and on the
test set (by usingNBapply onxtest,ytest). Sanity check: You should get test error of0.1867.

4. The provided function (in CodeEx)NBcv computes theK-fold cross-validation error. (This calls your functions
NBtrain andNBapply.) K = 1 means no cross-validation, that is error is simply computedon the whole
training set. Use this to compute the 10-fold error rate on the training set. How does this compare to the (non
cross validated) training and test error?

5. Plot (as histograms) the class-conditional densitiesp(xj = 1|y = c, θc) for classesc = 1, 2 and wordsj = 1 :
600. You should get the same result as Figure 2.

6. What are the 5 most likely words in each class?

7. It is clear that the most probable words are not very discriminative. One way to measure how much information
a word (feature)Xj ∈ {0, 1} conveys about the class labelY ∈ {1, 2} is by computing themutual information
betweenXj andY , denotedI(Xj , Y ), and defined as

mi(j) = I(Xj , Y ) =

1
∑

x=0

2
∑

c=1

p(Xj = x, Y = c) log
p(Xj = x, Y = c)

p(Xj = x)p(Y = c)
(9)

If we assume equal class priors,p(Y = 1) = p(Y = 2) = 0.5, then

p(Xj = 1, Y = c) = p(Xj |Y = y)p(Y = c) =
θjc

2
(10)

Use the provided function (jn CodeEx)NBmi to compute the 5 words with the highest mutual information with
the class label. (Use theθ’s estimated onxtrain,ytrain.) List the words along with the corresponding
values ofMI. (As a sanity check, the first word should be “windows” with anMI of 0.2150.)
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Figure 2: Class conditional densitiesp(xj = 1|c) for two document classes. The big spike at index 107 corresponds to the
word “subject”, which occurs in both classes with probability 1.
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