
Stat 406 Spring 2007: Homework 2

Out Mon 15 Jan, back Mon 22 Jan

1 Gaussian decision Boundaries

Suppose we have two 1D normal distributions with the same variance, but with different means:N(µ1, σ
2) and

N(µ2, σ
2). Explain the effect on the decision boundary of changing theclass priorp(Y = 1).

2 More Gaussian decision boundaries

Let p(x|y = j) = N (x|µj , σj) wherej = 1, 2 andµ1 = 0, σ2
1 = 1, µ2 = 1, σ2

2 = 106. Let the class priors be equal,
p(y = 1) = p(y = 2) = 0.5.

1. Find the decision region
R1 = {x : p(x|µ1, σ1) ≥ p(x|µ2, σ2)} (1)

Sketch the result. Hint: draw the curves and find where they intersect. Findboth solutions of the equation

p(x|µ1, σ1) = p(x|µ2, σ2) (2)

Hint: recall that to solve a quadratic equationax2 + bx + c = 0, we use

x =
−b ±

√
b2 − 4ac

2a
(3)

2. Now supposeσ2 = 1 (and all other parameters remain the same). What isR1 in this case?

3 Bayes classifier for Gaussian data
Note: you can solve this exercise by hand or using a computer (matlab, R, whatever). In either case, show your work.
Consider the following training set of heightsx (in inches) and gendery (male/female) of some US college students.

x y
67 m
79 m
71 m
68 f
67 f
60 f

1. Fit a Bayes classifier to this data, using maximum likelihood estimation, i.e., estimate the parameters of the class
conditional likelihoods

p(x|y = c) = N (x; µc, σc) (4)

and the class prior
p(y = c) = πc (5)

What are your values ofµc, σc, πc for c = m, f? Show your work (so you can get partial credit if you make an
arithmetic error).
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2. Computep(y = m|x, θ̂), wherex = 72, andθ̂ are the MLE parameters. Hint: recall that a Gaussian densityis
given by

N (x|µ, σ)
def
=

1√
2πσ2

e−
1

2σ
2
(x−µ)2 (6)

3. What would be a simple way to extend this technique if you had multiple attributes per person, such as height
and weight? Write down your proposed model as an equation.

4 Gaussian classifier for height/weight data
In this example, you will train a Bayesian classifier to computep(y|x), wherey ∈ {1, 2} representing male or female,
andx is either the person’s height, weight, or both. When we combine height and weight, we will compare a full
covariance model with a diagonal covariance model (naive Bayes). Turn in a printout (hardcopy) of your code and
figures/ results.
Be sure to downloadCode.zip, andData.zip. Suppose you unzip them toC:/foo/Code andC:/foo/Data.
Then in matlab you can typeaddpath C:/foo/Code andaddpath C:/foo/Data.

1. Load the data usingheightWeightDataLoad. This returnsdata.X, where column one is height and
column two is weight, anddata.Y, where 1=male, 2=female. Partition this data into a training set (80% of
the data) and a testing set (20%). You can use the provided functionpartitionDataset for this. To ensure
everyone gets the same results, please set the random numberseed as follows:

data = heightWeightDataLoad;
seed = 0;
rand(’state’, seed);
randn(’state’, seed);
[traindata, testdata] = partitionDataset(data, 0.8);

2. Using the provided functiongaussianClassifierTrain, train up 4 different classifiers on the training
data. Model 1 uses the height, model 2 uses the weight, model 3uses both, and model 4 is a naive Bayes
classifier that uses both. Hint: model 4 can be derived from model 3 by making the covariance matrices be
diagonal. (The covariance matrices are 3D matrices whereparams.Sigma(:,:,c) representsΣc for class
c.)

3. Using the provided functiongaussianClassifierApply, apply your 4 models to the test set (using the
appropriate columns of the test data) and computepim = p(y = 1|x(i, :), m) for modelm and test casei. Now
plot pim vs i for each model, superimposing the plots. To make the resultseasier to interpret, first sort the test
data so the males come before the females using

[junk, perm] = sort(testdata.Y); % 1’s (male) come first
testdata.X = testdata.X(perm,:);
testdata.Y = testdata.Y(perm);

The result should look like Figure 1. Everything to the left of index 20 is male and should be a large number;
everything to the right of index 20 is female and should be a small number.

4. It is hard to tell which classifier is working best, so use the provided functionROCcurve to plot ROC curves
for the 4 models. For example, for modelm, you can use

[faRate{m}, hitRate{m}, AUC] = ROCcurve(probMale(:,m), (testdata.Y==1), 0);

whereprobMale(i,m) = pim defined above. Plot hitRate vs faRate usingplot andhold on. The result
should look something like Figure 2.

5. The ROC curves show that weight is a better feature than height. However, earlier we showed that thed′ value
for height was larger than for weight. Explain this discrepancy. Also, the naive Bayes result seems to be the
same as the full covariance. Explain this discrepancy.
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Figure 1: Probability of being male vs index on the test set.
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Figure 2: ROC curves for models 1 to 4.
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