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Abstract—Research into methods for reasoning under uncertainty is currently one of the most exciting areas of artificial intelligence,

largely because it has recently become possible to record, store, and process large amounts of data. While impressive achievements

have beenmade in pattern classification problems such as handwritten character recognition, face detection, speaker identification, and

prediction of gene function, it is evenmore exciting that researchers are on the verge of introducing systems that can perform large-scale

combinatorial analyses of data, decomposing the data into interacting components. For example, computational methods for automatic

scene analysis are now emerging in the computer vision community. These methods decompose an input image into its constituent

objects, lighting conditions, motion patterns, etc. Two of the main challenges are finding effective representations and models in specific

applications and finding efficient algorithms for inference and learning in thesemodels. In this paper, we advocate the use of graph-based

probability models and their associated inference and learning algorithms. We review exact techniques and various approximate,

computationally efficient techniques, including iterated conditional modes, the expectation maximization (EM) algorithm, Gibbs

sampling, the mean field method, variational techniques, structured variational techniques and the sum-product algorithm (“loopy” belief

propagation). We describe how each technique can be applied in a visionmodel of multiple, occluding objects and contrast the behaviors

and performances of the techniques using a unifying cost function, free energy.

Index Terms—Graphical models, Bayesian networks, probability models, probabilistic inference, reasoning, learning, Bayesian

methods, variational techniques, sum-product algorithm, loopy belief propagation, EM algorithm, mean field, Gibbs sampling, free

energy, Gibbs free energy, Bethe free energy.
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1 INTRODUCTION

USING the eyeball of an ox, Rene Descartes demonstrated
in the 17th century that the backside of the eyeball

contains a two-dimensional projection of the three-dimen-
sional scene. Isolated during the plague, Isaac Newton
slipped a bodkin into his eyeball socket behind his eyeball,
poked the backside of his eyeball at different locations, and
saw small white and colored rings of varying intensity.
These discoveries helped to formalize the problem of vision:
What computational mechanism can interpret a three-
dimensional scene using two-dimensional light intensity
images as input? Historically, vision has played a key role
in the development of models and computational mechan-
isms for sensory processing and artificial intelligence.

By the mid-19th century, there were two main theories of

natural vision: the “nativist theory,” where vision is a

consequence of the lower nervous system and the optics of

the eye, and the “empiricist theory,” where vision is a

consequence of learned models created from physical and

visual experiences. Hermann von Helmholtz advocated the

empiricist theory and, in particular, that vision involves

psychological inferences in the higher nervous system, based

on learned models gained from experience. He conjectured
that the brain learns a generative model of how scene
components are put together to explain the visual input and
that vision is inference in these models [7]. A computational
approach toprobabilistic inferencewaspioneeredbyThomas
Bayes and Pierre-Simon Laplace in the 18th century, but it
was not until the 20th century that these approaches could be
used to process large amounts of data using computers. The
availability of computer power motivated researchers to
tackle larger problems and develop more efficient algo-
rithms. In the past 15 years, we have seen a flurry of intense,
exciting, and productive research in complex, large-scale
probabilitymodels and algorithms for probabilistic inference
and learning.

This paper has two purposes: First, to advocate the use of
graph-based probability models for analyzing sensory input
and, second, to describe and compare the latest inference and
learning algorithms. Throughout the reviewpaper,weuse an
illustrative exampleof amodel that learns todescribepictures
of scenes as a composition of images of foreground and
background objects, selected from a learned library. We
describe the latest advances in inference and learning
algorithms, using the above model as a case study, and
compare the behaviors and performances of the various
methods. This material is based on tutorials we have run at
several conferences, including CVPR00, ICASSP01, CVPR03,
ISIT04, and CSB05.

2 GRAPHICAL PROBABILITY MODELS AND

REASONING UNDER UNCERTAINTY

In practice, our inference algorithms must cope with
uncertainties in the data, uncertainties about which features
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are most useful for processing the data, uncertainties in the
relationships between variables, and uncertainties in the
value of the action that is taken as a consequence of inference.
Probability theory offers a mathematically consistent way to
formulate inference algorithms when reasoning under
uncertainty.

There are two types of probability model. A discriminative

model predicts the distribution of the output given the input:
P ðoutputjinputÞ. Examples include linear regression, where
the output is a linear function of the input, plus Gaussian
noise, and SVMs, where the binary class variable is Bernoulli
distributed with a probability given by the distance from the
input to the support vectors. A generative model accounts for
all of the data: P ðdataÞ or P ðinput; outputÞ. An example is the
factor analyzer, where the combined input/output vector is a
linear function of a short, Gaussian hidden vector, plus
independent Gaussian noise. Generative models can be used
for discrimination by computing P ðoutputjinputÞ using
marginalization and Bayes rule. In the case of factor analysis,
it turns out that the output is a linear function of a low-
dimensional representation of the input, plus Gaussian noise.

Ng and Jordan [32] show that, within the context of
logistic regression, for a given problem complexity,
generative approaches work better than discriminative
approaches when the training data is limited. Discrimi-
native approaches work best when the data is extensively
preprocessed so that the amount of data relative to the
complexity of the task is increased. Such preprocessing
involves analyzing the unprocessed inputs that will be
encountered in situ. This task is performed by a user who
may or may not use automatic data analysis tools, and
involves building a model of the input, P ðinputÞ, that is
either conceptual or operational. An operational model
can be used to perform preprocessing automatically. For
example, PCA can be used to reduce the dimensionality
of the input data in the hope that the low-dimensional
representation will work better for discrimination. Once
an operational model of the input is available, the
combination of the preprocessing model P ðinputÞ and
the discriminative model P ðoutputjinputÞ corresponds
to a particular decomposition of a generative model:
P ðoutput; inputÞ ¼ P ðoutputjinputÞP ðinputÞ.

Generative models provide a more general way to
combine the preprocessing task and the discriminative task.
By jointlymodeling the input and output, a generativemodel
candiscover useful, compact representations anduse these to
better model the data. For example, factor analysis jointly
finds a low-dimensional representation thatmodels the input
and is good at predicting the output. In contrast, preproces-
sing the input using PCA ignores the output. Also, by
accounting for all of the data, a generative model can help
solve one problem (e.g., face detection) by solving another,
related problem (e.g., identifying a foreground obstruction
that can explain why only part of a face is visible).

Formally, a generative model is a probability model for
which the observed data is an event in the sample space. So,
sampling from the model generates a sample of possible
observed data. If the training data has high probability, the
model is “a good fit.” However, the goal is not to find the
model that is the best fit, but to find a model that fits the data

welland isconsistentwithpriorknowledge.Graphicalmodels
provide a way to specify prior knowledge and, in particular,
structural prior knowledge, e.g., in a video sequence, the
future is independent of the past, given the current state.

2.1 Example: A Model of Foregrounds,
Backgrounds, and Transparency

The use of probability models in vision applications is, of
course, extensive. Here, we introduce a model that is simple
enough to study in detail here, but also correctly accounts
for an important effect in vision: occlusion. Fig. 1 illustrates
the training data. The goal of the model is to separate the
five foreground objects and the seven background scenes in
these images. This is an important problem in vision that
has broad applicability. For example, by identifying which
pixels belong to the background, it is possible to improve
the performance of a foreground object classifier since
errors made by noise in the background will be avoided.

The occlusion model explains an input image, with pixel
intensities z1; . . . ; zK , as a composition of a foreground image
and a background image (cf., [1]) and each of these images is
selected froma libraryofJ possible images (amixturemodel).
Although separate libraries can be used for the foreground
and background, for notational simplicity, we assume they
share a common image library. The generative process is
illustrated in Fig. 2a. To begin with, a foreground image is
randomly selected from the library by choosing the class
index f from the distribution, P ðfÞ. Then, depending on the
class of the foreground, a binary mask m ¼ ðm1; . . . ;mKÞ,
mi 2 f0; 1g is randomly chosen.mi ¼ 1 indicates that pixel zi
isa foregroundpixel,whereasmi ¼ 0 indicates thatpixelzi isa
background pixel. The distribution over mask RVs depends
on the foreground class, since the mask must “cut out” the
foreground object. However, given the foreground class, the
maskRVsarechosenindependently:P ðmjfÞ ¼

QK
i¼1 P ðmijfÞ.

Next, the class of the background, b 2 f1; . . . ; Jg, is randomly
chosen from P ðbÞ. Finally, the intensity of the pixels in the
image are selected independently, given the mask, the class
of the foreground, and the class of the background:
P ðzjm; f; bÞ ¼

QK
i¼1 P ðzijmi; f; bÞ. The joint distribution is

given by the following product of distributions:

P ðz;m; f; bÞ ¼

P ðbÞP ðfÞ
 YK
i¼1

P ðmijfÞ
! YK

i¼1
P ðzijmi; f; bÞ

!
:

ð1Þ

In this equation, P ðzijmi; f; bÞ can be further factorized by
noticing that if mi ¼ 0, the class is given by the RV b and
if mi ¼ 1 the class is given by the RV f . So, we can
write P ðzijmi; f; bÞ ¼ P ðzijfÞmiP ðzijbÞ1�mi , where P ðzijfÞ
and P ðzijbÞ are the distributions over the ith pixel intensity
givenby the foregroundandbackground, respectively. These
distributions account for the dependence of the pixel
intensity on the mixture index, as well as independent
observation noise. The joint distribution can thus be written:

P ðz;m; f; bÞ ¼

P ðbÞP ðfÞ
 YK
i¼1

P ðmijfÞ
! YK

i¼1
P ðzijfÞmi

! YK
i¼1

P ðzijbÞ1�mi

!
:

ð2Þ
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In comparison with (1), this factorization reduces the
number of arguments in some of the terms.

For representational and computational efficiency, it is
often useful to specify a model using parametric distribu-
tions. Given a foreground or background class index k, we
assume zi is equal to �ki plus zero-mean Gaussian noise with
variance  ki. This noise accounts for distortions that are not
explicitly modeled, such as sensor noise and fluctuations in
illumination. If aGaussianmodel of these noise sources is too
inaccurate, extra hiddenRVscanbe added tobettermodel the
noise, as described in Section 3. Note that in the above
parameterization, the foreground and background images
are selected from the same library.1 Denote the probability of
class k by �k and let the probability thatmi ¼ 1, given that the
foreground class is f , be �fi. Since the probability thatmi ¼ 0
is 1� �fi, we have P ðmijfÞ ¼ �mi

fi ð1� �fiÞ
1�mi . Using these

parametric forms, the joint distribution is

P ðz;m; f; bÞ ¼

�b�f

 YK
i¼1

�mi

fi ð1� �fiÞ
1�miNðzi;�fi;  fiÞmiNðzi;�bi;  biÞ1�mi

!
;

ð3Þ

where Nðz;�;  Þ is the normal density function on z with
mean � and variance  . An equivalent form is

P ðz;m; f; bÞ ¼

�b�f

 YK
i¼1

�mi

fi ð1� �fiÞ
1�miNðzi;mi�fi

þ ð1�miÞ�bi;mi fi þ ð1�miÞ biÞ
!
;

where, here the mask RVs “screen” the mean and variance
of the Gaussians.

In the remainder of this review paper, the above
occlusion model is used as an example. One of the appeals
of generative models is in their modularity and the ease
with which they can be extended to cope with more
complex data. In Section 3, we describe extensions of the
occlusion model that enable it to account for motion, object
deformations, and object-specific changes in illumination.

2.2 Graphical Models

Graphical models describe the topology (in the sense of
dependencies) of the components of a complex probability
model, clarify assumptions about the representation, and
lead to algorithms that make use of the topology to achieve
exponential speed-ups. When constructing a complex prob-
ability model, we are faced with the following challenges:
ensuring that the model reflects our prior knowledge;
deriving efficient algorithms for inference and learning,
translating themodel to a different form, and communicating
the model to other researchers and users. Graphical models
overcome these challenges in a wide variety of situations.
After commenting on each of these issues, we briefly review

1394 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 9, SEPTEMBER 2005

Fig. 1. Some of the 300 images used to train the model in Section 2.1. Each image was created by randomly selecting one of seven backgrounds
and one of five foreground objects from the Yale face database, combining them into a 2-layer image, and adding normal noise with standard
deviation of 2 percent of the dynamic range. Each foreground object always appears in the same location in the image, but different foreground
objects appear in different places so that each pixel in the background is seen in several training images.

1. If it is desirable that the foreground and background images come
from separate libraries, the class RVs f and b can be constrained, e.g., so that
f 2 f1; . . . ; ng, b 2 fnþ 1; . . . ; nþ lg, in which case, the first n images in the
library are foreground images and the next l images are background
images.



three kinds of graphical model: Bayesian networks (BNs),
Markov random fields (MRFs), and factor graphs (FGs). For a
more extensive treatment, see [4], [9], [23], [24], [33].

Prior knowledge usually includes strong beliefs about the
existence of hidden random variables (RVs) and the relation-
ships between RVs. This notion of “modularity” is a central
aspect of graphical models. In a graphical model, the
existence of a relationship is depicted by a path that connects
the two RVs. A related concept is the Markov blanket of an
RV x—the minimal set of RVs that when given, makes
x independent of all other RVs. Probabilistic inference in a
probability model can, in principle, be carried out by using
Bayes rule. However, for the complex models that accurately
describe many problems, direct application of Bayes rule
leads to an intractable number of computations. A graphical
model identifies themodules in the systemand can beused to
derive algorithms that achieve exponential speedups. In a
complex probability model, computational inference and

interpretation usually benefit from judicious groupings of
RVsand these clusters should take into accountdependencies
between RVs. Other types of useful transformation include
splitting RVs, eliminating (integrating over) RVs, and con-
ditioningonRVs. Byexamining thegraph,we canoften easily
identify transformation steps thatwill lead to simplermodels
or models that are better suited to our goals and in particular
our choice of inference algorithm. For example, we may be
able to transform a graphical model that contains cycles to a
tree and thususe anexact but efficient inference algorithm.By
examining a picture of the graph, a researcher or user can
quickly identify the dependency relationships between RVs
in the system and understand how the influence of an RV
flows through the system to change the distributions over
other RVs. Whereas block diagrams enable us to efficiently
communicate how computations and signals flow through a
system, graphical models enable us to efficiently commu-
nicate the dependencies between components in a modular
system.

2.3 Bayesian Network (BN) for the Occlusion Model

A Bayesian network (BN) [4], [24], [33] for RVs x1; . . . ; xN is a
directed acyclic graph (no directed cycles) on the set of RVs,
along with one conditional probability function for each RV
given itsparents,P ðxijxAi

Þ,whereAi is the setof indicesofxi’s
parents.The jointdistribution isgivenby theproductof all the
conditional probability functions: P ðxÞ ¼

QN
i¼1 P ðxijxAi

Þ.
Fig. 2b shows the BN for the occlusion model in (1), with

K ¼ 3 pixels. By grouping the mask RVs together and the
pixels together, we obtain the BN shown in Fig. 2c. Here, z
is a real vector, z ¼ ðz1; z2; z3Þ and m is a binary vector,
m ¼ ðm1;m2;m3Þ. Although this graph is simpler than the
graph in Fig. 2b, it is also less explicit about dependencies
among pixels and mask RVs.

The graph indicates conditional independencies, as
described in [33]. For example, the Markov blanket of m1 is
ff; b; z1g. In a BN, observing a child induces a dependence
between its parents. Here, the BN indicates that f and b are
dependent given z and m, even though they are not
(observing m decouples f and b). This demonstrates that
BNs are not good at indicating conditional independence.
However, the BN indicates that f and b are marginally
independent, demonstrating that BNs are good at indicating
marginal independence.

2.4 Markov Random Field (MRF) for the Occlusion
Model

A Markov Random Field (MRF) [4], [24], [33] for RVs

x1; . . . ; xN is an undirected graph on the set of RVs, along

with one potential function for each maximal clique, gkðxCkÞ,
where Ck is the set of indices of the RVs in the kth maximal

clique. The joint distribution is given by the product of all

the potential functions divided by a normalizing constant,

Z, called the partition function: P ðxÞ ¼ 1
Z
QK

k¼1 gkðxCkÞ, where

Z ¼
P

x1;...;xN
ð
QK

k¼1 gkðxCkÞÞ. A clique is a fully connected

subgraph, and a maximal clique is a clique that cannot be

made larger while still being a clique. For brevity, we use

the term “clique” to refer to a maximal clique, e.g., the

potentials on maximal cliques are usually called clique

potentials.
Theabove factorizationof the jointdistribution is similar to

the factorization for the BN, where each conditional prob-
ability function can be viewed as a clique potential. However,
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Fig. 2. (a) A generative process that explains an image as a composition
of the image of a foreground object with the image of the background,
using a transparency map or mask. The foreground and background are
each selected stochastically from a library and the generation of the
mask depends on the foreground that was selected. We refer to this
model as the occlusion model. (b) A BN for an occlusion model with
three pixels, where f is the index of the foreground image, b is the index
of the background image,mi is a binary mask RV that specifies whether
pixel zi is from the foreground image (mi ¼ 1) or the background image
(mi ¼ 0). (c) A simpler, but less explicit, BN is obtained by grouping the
mask RVs together and the pixels together. (d) An MRF for the occlusion
model. (e) An MRF corresponding to the BN in (c). (f) An FG for the
occlusion model. (g) A directed FG expressing all properties of the BN in
(c) and the MRF in (e).



there is an important difference: In a BN, the conditional
probability functions are individually normalized with
regard to the child, so the product of conditional probabilities
is automatically normalized andZ ¼ 1.

An MRF for the occlusion model in (2) is shown in Fig. 2d

and the version where the mask RVs are grouped and the

pixels are grouped is shown in Fig. 2e. Note that the MRF

includes an edge fromm to b, indicating they are dependent,

eventhoughtheyarenot.Thisdemonstrates thatMRFsarenot

good at indicating marginal independence. However, the

MRF indicates f and b are independent given z and m,

demonstrating that MRFs are good at indicating conditional

independence.

2.5 Factor Graph (FG) for the Occlusion Model

Factor graphs (FGs) [9], [23] subsumeBNsandMRFs.AnyBN

or MRF can be easily converted to an FG, without loss of

information. Further, there exist models that have indepen-

dence relationships that cannot be expressed in a BN or an

MRF,but that canbeexpressed inanFG.FGsaremore explicit

about the factorization of the distribution than BNs and

MRFs. Also, belief propagation takes on a simple form in FGs

so that inference in both BNs andMRFs can be simplified to a

single, unified inference algorithm.

A factor graph (FG) for RVs x1; . . . ; xN and local functions

g1ðxC1
Þ; . . . ; gKðxCK Þ is a bipartite graph on the set of RVs and

a set of nodes corresponding to the functions, where each

function node gk is connected to the RVs in its argument xCk .

The joint distribution is given by the product of all the

functions: P ðxÞ ¼ 1
Z
QK

k¼1 gkðxCkÞ. In fact, Z ¼ 1 if the FG is a

directed graph, as described below.Otherwise,Z ensures the

distribution is normalized. Note that the local functions may

be positive potentials, as in MRFs, or conditional probability

functions, as in BNs.
Fig. 2f shows an FG for the occlusionmodel in (1). As with

BNs and MRFs, we can group variables to obtain a simpler
FG. Also, we can indicate conditional distributions in an FG
usingdirected edges, inwhich case,Z ¼ 1. Fig. 2g shows such
a directed FG for the model with variables grouped together.
This FG expresses all properties of the BN and MRF. As
described in [9], all independencies that can be expressed in
BNs andMRFs canbe expressed inFGs.Here, thedirected FG
indicates that f and b are independent (expressed by the BN
but not theMRF) and it indicates that f and b are independent
given z and m (expressed by the MRF but not the BN).
Another advantage of FGs is that, because they explicitly
identify functions, they provide a useful graph for message-
passing algorithms, such as belief propagation.

2.6 Converting between FGs, BNs, and MRFs

BNs and MRFs represent different independence proper-
ties, but FGs can represent all the properties that BNs and
MRFs can represent.

A BN can be converted to an FG by “pinning” the edges
arriving at each variable together and creating a function
node associated with the conditional distribution. Directed
edges are used to indicate the parent-child relationship, as
shown in Fig. 2g. A directed FG can be converted to a BN by
“unpinning”each functionnode.AnMRFcanbeconverted to
an FG by creating one function node for eachmaximal clique,
connecting the function node to the variables in the maximal

clique, and setting the function to the clique potential. An FG
can be converted to an MRF by creating a maximal clique for
each function node and setting the clique potential to the
function.

In fact, if aBN is converted to adirectedFGandbackagain,

the same BN is obtained. Similarly, if an MRF is converted to

an FG and back again, the same MRF is obtained. Conse-

quently, the rules for determining conditional independence

in BNs andMRFs map losslessly to FGs, i.e., FGs can express

all conditional independencies that BNs and MRFs can

express. The converse is not true: There are FGs that express

independencies that cannot be expressed in a BN or anMRF,

e.g., the FG in Fig. 2g. It is also the case thatmultiple FGsmay

be converted to the same BN or MRF—a consequence of the

fact that FGs are more explicit about factorization.

Another way to interconvert between representations is

to expand the graph to include extra edges and extra

variables (cf., [37]).

3 BUILDING COMPLEX MODELS USING

MODULARITY

Graphical models provide a way to link simpler models

together in a principled fashion that respects the rules of

probability theory. Fig. 3 shows how the occlusionmodel can

be used as a module in a larger model that accounts for

changing object positions, deformations, object occlusion,

and changes in illumination. The figure shows a BN, where

the appearance and mask vector RVs are shown as images

and the brightness, deformation, andposition RVs are shown

pictorially. After inference and learning, the video frame is

automatically decomposed into the parts shown in the BN.

Previous papers describe efficient techniques for inference

and learning in models that account for changes in object

locations andmoving objects [11], changes in appearances of

moving objects and image patches using a subspace model

[10], commonmotion patterns ofmoving objects [21], layered

models of occluding objects in 3D scenes [19], and the

“epitome” of components in object appearance and shape

[20]. An inference and learning algorithm in a combined

model, like the one shown above, can be obtained by linking

together the modules and associated algorithms. Many other

interesting avenues within this framework are being ex-

plored or have yet to be explored. For example,Williams and

Titsias [36] describe a fast, greedy way to learn layered

models of occluding objects.

4 PARAMETERIZED MODELS AND THE

EXPONENTIAL FAMILY

So far, we have studied graphical models as representations

of structured probability models for data analysis. We now

turn to thegeneral problemofhow to learn thesemodels from

training data. For the purpose of learning, it is often

convenient to express the conditional distributions or

potentials in a graphical model as parameterized functions.

Choosing the forms of the parameterized functions usually

restricts the model class, but can make computations easier.
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For example, Section 2.1 shows howwe can parameterize the

conditional probability functions in the occlusion model.

4.1 Parameters as RVs

Usually, themodel parameters are not known exactly, butwe

have prior knowledge and experimental results that provide

evidence for plausible values of the model parameters.

Interpreting the parameters as RVs, we can include them in

the conditional distributions or potentials that specify the

graphicalmodel, andencodeourprior knowledge in the form

of a distribution over the parameters.

IncludingtheparametersasRVsintheocclusionmodel,we

obtain the following conditional distributions: P ðbj�Þ ¼ �b,
P ðf j�Þ ¼ �f ,P ðmijf; �1i; . . . ; �JiÞ¼�mi

fi ð1� �fiÞ
1�mi ,Pfðzijf;

�1i; . . . ; �Ji;  1i; . . . ;  JiÞ¼ N ðzi;�fi;  fiÞ,Pbðzijb; �1i; . . . ; �Ji;
 1i; . . . ;  JiÞ ¼ N ðzi;�bi;  biÞ. We obtain a simplermodel (but

one that is lessspecificabout independencies)bygroupingthe

mask RVs, the pixels, the mask parameters, and the pixel

means and variances. The resulting conditional distributions

areP ðbj�Þ¼�b,P ðf j�Þ¼�f ,P ðmjf; �Þ¼
QK

i¼1 �
mi

fi ð1��fiÞ
1�mi ,

P ðzjm; f; b; �;  ; �;  Þ¼
QK

i¼1Nðzi;�fi;  fiÞ
miNðzi;�bi; biÞ1�mi .

Since we are interpreting the parameters as RVs, we

must specify a distribution for them. Generally, the

distribution over parameters can be quite complex, but

simplifying assumptions can be made for the sake of

computational expediency, as describe in later sections. For

now, we assume that P ð�; �; �;  ; �Þ ¼ P ð�ÞP ð�ÞP ð�ÞP ð Þ.

The BN for this parameterized model is shown in Fig. 4a,

and the joint distribution over RVs and parameters is

P ðz;m; f; b; �; �; �;  Þ ¼
P ðbj�ÞP ðf j�ÞP ðmjf; �ÞP ðzjm; f; b; �;  ÞP ð�ÞP ð�ÞP ð�ÞP ð Þ:

4.2 Introducing Training Data

Training data can be used to infer plausible configurations of
themodelparameters.We imagine that there is a settingof the
parameters that produced the training data. However, since
we only see the training data, there will be many settings of
the parameters that are good matches to the training data, so
the best we can do is compute a distribution over the
parameters.

Denote the hidden RVs by h and the visible RVs by v. The
hiddenRVs can be divided into the parameters, denoted by �,
and one set of hidden RVs hðtÞ, for each of the training cases,
t ¼ 1; . . . ; T . So, h ¼ ð�; hð1Þ; . . . ; hðT ÞÞ. Similarly, there is one
set of visibleRVs for each training cases, so v ¼ ðvð1Þ; . . . ; vðT ÞÞ.
Assuming the training cases are independent and identically
drawn (i.i.d.), the distribution over all visible RVs andhidden
RVs (including parameters) is

P ðh; vÞ ¼ P ð�Þ
YT
t¼1

P hðtÞ; vðtÞj�
� �

:

P ð�Þ is the parameter prior and
QT

t¼1 P ðhðtÞ; vðtÞj�Þ is the
likelihood. In the occlusion model described above, we have
� ¼ ð�;  ; �; �Þ, hðtÞ ¼ ðf ðtÞ; bðtÞ;mðtÞÞ, and vðtÞ ¼ zðtÞ. The BN
for T i.i.d. training cases is shown in Fig. 4b.
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Fig. 3. Simple probability models can be combined in a principled way to build a more complex model that can be learned from training data. Here,
after the model parameters (some shown in the top row of pictures) are learned from the input video, the model explains a particular video frame as a
composition of four “cardboard cutouts,” each of which is decomposed into appearance, transparency (mask), position, brightness, and deformation
(which accounts for the gait of the walking person).



When the training cases consist of time-series data (such as

a video sequence), the parameters often can be thought of as

RVs that change slowly over time. Fig. 4c shows the above

model, where there is a different set of parameters for each

training case, but where we assume the parameters are

coupled across time. Using ðtÞ to denote the training case at

time t ¼ 1; . . . ; T , the following distributions couple the

parameters across time: P ð�ðtÞj�ðt�1ÞÞ, P ð�ðtÞj�ðt�1ÞÞ, P ð�ðtÞj
�ðt�1ÞÞ, P ð ðtÞj ðt�1ÞÞ. The uncertainty in these distributions

specifies how quickly the parameters can change over time.

Such a model can be viewed as the basis for online learning

algorithms.Forsimplicity, in thispaper,weassumethemodel

parameters are fixed for the entire training set.

4.3 The Exponential Family

Members of the exponential family [2] have the following
parameterization: P ðxj�Þ ¼ ð1=Zð�ÞÞ exp

�P
i �i�iðxÞ

�
, where

� ¼ ð�1; �2; . . .Þ is a parameter vector and �iðxÞ is the

ith sufficient statistic. The sufficient statistics of x contain all

information that is needed to determine the density of x.Zð�Þ
is the partition function, which normalizes P ðxj�Þ: Zð�Þ ¼P

x expð
P

i �i�iðxÞÞ. For members of the exponential family,

there is a simple relationship between the distribution for one

training case and thedistribution for an entire training set. Let

xðtÞ be thehidden andvisiblevariables for the tth training case.

Then, P ðxðtÞj�Þ ¼ expð
P

i �i�iðxðtÞÞÞ=Zð�Þ and the likelihood

for the entire training set is P ðxj�Þ ¼
Q

t P ðxðtÞj�Þ ¼ exp

ð
P

i �ið
PT

t¼1 �iðxðtÞÞÞÞ=Zð�ÞT . The sufficient statistics for

the entire training set are given by summing the sufficient

statistics over training cases.
To put the occlusion model in exponential family form,

note that the sufficient statistics for a normal density on zi

are zi and z2i . The reader can confirm that the joint

distribution can be written
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Fig. 4. (a) The parameter sets �, �, �, and  can be included in the BN as RVs. (b) For a training set with T i.i.d. cases, these parameters are shared
across all training cases. (c) If the training cases are time-series data (e.g., a video sequence), we may create one parameter set for each time
instance, but require the parameters to change slowly over time. (d) Generally, undirected graphical models must include a normalization function
1=Zð�Þ, which makes inference of the parameters more difficult. Viewing the occlusion model as a member of the exponential family, we can draw an
undirected FG, which includes the function, 1=Zð�Þ. (e) When the parameters specify conditional distributions, Zð�Þ factorizes into local terms,
leading to a representation that is equivalent to the one in (a).



P ðz;m; f; bÞ ¼ ð1=Zð�ÞÞ exp
 XJ

j¼1
ðln�jÞf½b ¼ j�g

þ
XJ
j¼1
ðln�jÞf½f ¼ j�g

þ
XK
i¼1

XJ
j¼1
ðln�jiÞf½mi ¼ 1�½f ¼ j�g

þ
XK
i¼1

XJ
j¼1
ðlnð1� �jiÞÞf½mi ¼ 0�½f ¼ j�g

�
XK
i¼1

XJ
j¼1
ð1=2 jiÞfz2i ½mi ¼ 1�½f ¼ j�g

þ
XK
i¼1

XJ
j¼1
ð�ji= jiÞfzi½mi ¼ 1�½f ¼ j�g

�
XK
i¼1

XJ
j¼1
ð1=2 jiÞfz2i ½mi ¼ 0�½b ¼ j�g

þ
XK
i¼1

XJ
j¼1
ð�ji= jiÞ; fzi½mi ¼ 0�½b ¼ j�g

!
;

where curly braces identify the sufficient statistics and
square braces indicate Iverson’s notation: ½expr� ¼ 1 if expr
is true, and ½expr� ¼ 0 if expr is false.

Modular structure in members of the exponential family
ariseswhen each sufficient statistic�iðxÞdepends on a subset
of RVs xCi with indices Ci. Then, P ðxÞ ¼ ð1=Zð�ÞÞ

Q
i

expð�i�iðxCiÞÞ, so we can express P ðxÞ using a graphical
model, e.g., an FG. In the FG, there can be one function node
for each sufficient statistic �i and one variable node for each
parameter �i, but amore succinct FG is obtained by grouping
related sufficient statistics together and grouping their
corresponding parameters together. Fig. 4d shows an FG for
the exponential family representation of the occlusionmodel,
wherewehavemadegroupsof�s,�s,�s, and s.Note that the
FGmust include the normalizing function 1=Zð�Þ.

Generally, computing Zð�Þ is intractable since we must
sum or integrate over x. However, if the exponential family
parameterization corresponds to aBN, the sufficient statistics
can be grouped so that each group defines a conditional
distribution in the BN. In this case, Zð�Þ simplifies to a
product of local partition functions, where each local
partition function ensures that the corresponding conditional
distribution is normalized. In the above model, the normal-
ization constants associated with the conditional distribu-
tions for f , m, b, and z are uncoupled, so we can write
Zð�Þ ¼ Zð�ÞZð�ÞZð�ÞZð Þ, where, e.g.,Zð Þ ¼

Q
jk

ffiffiffiffiffiffiffiffiffiffiffiffi
2� jk

p
.

Fig. 4e shows theFG in this case,whichhas the same structure
as the BN in Fig. 4a.

4.4 Uniform and Conjugate Parameter Priors

Parameter priors encode the cost of specific configurations of
the parameters. For simplicity, the uniform prior is often used,
where P ð�Þ ¼ const. Then, P ðh; vÞ /

QT
t¼1 P ðhðtÞ; vðtÞj�Þ and

the dependence of the parameters on the data is determined
solely by the likelihood. In fact, a uniformprior is not uniform
under adifferent parameterization.Also, theuniformdensity
for the real numbers does not exist, so the uniform prior is
improper. However, these facts are often ignored for computa-
tional expediency. Importantly, the use of a uniform prior is
justified when the amount of training data is large relative to

the maximum model complexity since then the prior will
have little effect on the model. One exception is zeros in the
prior, which can never be overcome by the likelihood, but
suchhard constraints often can be inorporated in the learning
algorithm, e.g., using Lagrange multipliers.

Assuming a uniform prior for all parameters in the
occlusion model, the joint distribution over RVs and
parameters is

P �;  ; �; �; f ð1Þ; bð1Þ;mð1Þ; . . . ; fðT Þ; bðT Þ;mðT Þ; zð1Þ; . . . ; zðT Þ
� �

/
YT
t¼1

 
�fðtÞ�bðtÞ

 YK
i¼1

�
m
ðtÞ
i

fðtÞi
1� �f ðtÞi
� �1�mðtÞi N z

ðtÞ
i ;�fðtÞi;  fðtÞi

� �mðtÞi

N z
ðtÞ
i ;�bðtÞi;  bðtÞi

� �1�mðtÞi !!
:

ð4Þ

Note that when using uniform priors, parameter constraints
such as

PJ
i¼1 �i ¼ 1 must be taken into account during

inference and learning.
The conjugate prior offers the same computational advan-

tage as the uniform prior, but allows specification of stronger
prior knowledge and is also a proper prior. The idea is to
choose a prior that has the same form as the likelihood, so the
prior canbe thoughtofas the likelihoodof fake,user-specified
data. The joint distribution over parameters and RVs is given
by the likelihood of both the real data and the fake data. For
members of the exponential family, the fake training data
takes the form of extra, user-specified terms added to each
sufficient statistic, e.g., extra counts added for Bernoulli RVs.

In the occlusion model, imagine that before seeing the
training datawe observe �j fake examples from image class j.
The likelihood of the fake data for parameter �j is �j

�j , so the
conjugate prior for �1; . . . ; �J is P ð�1; . . . ; �JÞ /

QJ
j¼1 �j

�j ifPJ
j¼1 �j ¼ 1 and 0 otherwise. This is theDirichlet distribution

andP ð�1; . . . ; �JÞ is theDirichletprior.Theconjugateprior for
themeanof aGaussiandistribution is aGaussiandistribution
because the RV and its mean appear symmetrically in the
Gaussianpdf.The conjugateprior for the inverse variance� of a
Gaussian distribution is a Gamma distribution. Imagine fake
data consisting of � examples, where the squared difference
between the RV and itsmean is �2. The likelihood for this fake
data is proportional to ð�1=2e��2�=2Þ� ¼ ��=2e�ð��2=2Þ�. This is a
Gamma distribution in � with mean 1=�2 þ 2=��2 and
variance 2ð1=�2 þ 2=��2Þ=��2. Setting the prior for � to be
proportional to this likelihood,we see that the conjugateprior
for the inverse variance is the Gamma distribution.

5 ALGORITHMS FOR INFERENCE AND LEARNING

Once a generative model describing the data has been
specified, data analysis consists of probabilistic inference. In
Fig 4b, for training images zð1Þ; . . . ; zðT Þ, vision consists of
inferring the set of mean images and variance maps, �,  ,
the mixing proportions �, the set of binary mask probabil-
ities, �, and, for every training case, the class of the
foreground image, f , the class of the background image, b,
and the binary mask used to combine these images, m.

Exact inference is often intractable, so we turn to
approximate algorithms that search for distributions that
are close to the correct posterior distribution. This is
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accomplished by minimizing pseudodistances on distribu-
tions, called “free energies.” (For an alternative view, see
[34].) It is interesting that, in the 1800s, Helmholtz was one
of the first researchers to propose that vision is inference in
a generative model and that nature seeks correct probability
distributions in physical systems by minimizing free
energy. Although there is no record that Helmholtz saw
that the brain might perform vision by minimizing a free
energy, we can’t help but wonder if he pondered this.

Viewing parameters as RVs, inference algorithms for RVs
and parameters alike make use of the conditional indepen-
dencies in the graphical model. It is possible to describe
graph-based propagation algorithms for updating distribu-
tions over parameters [15]. It is often important to treat
parameters and RVs differently during inference. Whereas
each RV plays a role in a single training case, the parameters
are shared acrossmany training cases. So, the parameters are
impacted by more evidence than RVs and are often pinned
down more tightly by the data. This observation becomes
relevant when we study approximate inference techniques
that obtain point estimates of the parameters, such as the
expectation maximization algorithm [6].

Wenow turn to the general problemof inferring the values
of unobserved (hidden) RVs, given the values of the observed
(visible) RVs.Denote the hiddenRVs by h and the visible RVs
by v and partition the hidden RVs into the parameters � and
one set of hidden RVs hðtÞ, for each training case t ¼ 1; . . . ; T .
So, h ¼ ð�; hð1Þ; . . . ; hðT ÞÞ. Similarly, there is one set of visible
RVs for each training case, so v ¼ ðvð1Þ; . . . ; vðT ÞÞ. Assuming
the training cases are i.i.d., the distribution over all RVs is

P ðh; vÞ ¼ P ð�Þ
 YT
t¼1

P hðtÞ; vðtÞj�
� �!

: ð5Þ

In the occlusion model, � ¼ ð�;  ; �; �Þ, hðtÞ ¼ ðf ðtÞ; bðtÞ;mðtÞÞ,
and vðtÞ ¼ zðtÞ.

Exact inference consists of computing estimates ormaking
decisions based on the posterior distribution over all hidden
RVs (including the parameters), P ðhjvÞ. From Bayes rule,

P ðhjvÞ ¼ P ðh; vÞR
h P ðh; vÞ

;

where the notation
R
h includes summing over discrete

hidden RVs. The denominator normalizes the distribution,
but if we need only a proportional function, P ðh; vÞ suffices
since with regard to h, P ðhjvÞ / P ðh; vÞ. In the case of a
graphical model, P ðh; vÞ is equal to either the product of the
conditional distributions or the product of the potential
functions divided by the partition function.

5.1 Partition Functions Complicate Learning

For undirected graphical models and general members of
the exponential family, P ðx; �Þ ¼ P ð�Þ 1

Zð�Þ
Q

k gkðxCkÞ and
lnP ðx; �Þ ¼ lnP ð�Þ � lnZð�Þ þ

P
k ln gkðxCkÞ. When adjust-

ing a particular parameter, the sum of log-potentials nicely
isolates the influence to those potentials that depend on the
parameter, but the partition function makes all parameters
interdependent. Generally, as shown in Fig. 4d, Zð�Þ
induces dependencies between all parameters. Since
Zð�Þ ¼

R
xð
Q

k gkðxCkÞ, exactly determining the influence of
a parameter change on the partition function is often
intractable. In fact, determining this influence can also be

viewed as a problem of approximate inference since the
partition function is the complete marginalization ofQ

k gkðxCkÞ. So, many of the techniques discussed in this
paper can be used to approximately determine the effect of
the partition function (e.g., Gibbs sampling [18]). There are
also learning techniques that are specifically aimed at
undirected graphical models, such as iterative proportional
fitting [4].

For directed models, the partition function factorizes into
local partition functions (cf., Fig. 4e), so the parameters can be
directly inferredusing the techniques described in this paper.

5.2 Model Selection

Often, some aspects of the model structure are known, but
others are not. In the occlusion model, we may be confident
about the structure of the BN in Fig. 4b, but not the number of
classes, J . Unknown structure can be represented as a hidden
RV so that inference of this hidden RV corresponds to
Bayesian model selection [16], [25]. The BN in Fig. 4b can be
modified to include an RV, J , whose children are all of the f
and b variables and where J limits the range of the class
indices. Given a training set, the posterior over J reveals how
probable the different models are. When model structure is
represented in thisway, proper priors should be specified for
all model parameters so that the probability density of the
extra parameters needed inmore complexmodels is properly
accounted for. For an example of Bayesian learning of infinite
mixture models, see [29].

5.3 Numerical Issues

Many inference algorithms rely on the computation of
expressions of the form p ¼

Q
j a

qj
j , where the number of

terms can be quite large. To avoid underflow, it is common to
work in the log-domain. Denoting the log-domain value of a
variable by “~,” we can compute ~pp 

P
j qj~aaj. If p is needed,

set p expð~ppÞ. Keep inmind that, if ~pp is large and negative, p
maybeset to0. Thisproblemcanbeavoidedwhencomputing
anormalized set ofpis (e.g., probabilities). Suppose ~ppi is the log-
domain value of the unnormalized version of pi. Since the pis
are to be normalized, we can add a constant to the ~ppis to raise
them to a level where numerical underflow will not occur
when taking exponentials. Computing ~mm maxi ~ppi and then
setting ~ppi  ~ppi � ~mmwill ensure thatmaxi ~ppi ¼ 0, so one of the
expð~ppiÞs will be 1. Next, compute the log-normalizing
constant, ~cc lnð

P
i expð~ppiÞÞ. The previous step ensures that

the sum in this expression will produce a strictly positive
number, avoiding ln 0. Finally, the ~ppis are normalized,
~ppi ~ppi�~cc, and, if needed, the pis are computed, pi expð~ppiÞ.
In some cases, notably when computing joint probabilities of
RVs and observations using the sum-product algorithm, we
need to compute theunnormalized sum s¼

P
i pi, where each

pi is so small that it is stored in its log-domain form, ~ppi. The
above method can be used, but ~mm must be added back in to
retain the unnormalized form. First, compute ~mm maxi ~ppi
and then set ~ss ~mmþ lnð

P
i expð~ppi � ~mmÞÞ.

5.4 Exact Inference in the Occlusion Model

We consider two cases: exact inference when the model
parameters are known and exact inference when the model
parameters are unknown. When the model parameters are
known, the distribution over the hidden RVs is given in (3). f
and b each take on J values and there areK binarymask RVs,
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so the total number of configurations of f , b, and m is J22K .
For moderate model sizes, even if we can compute the
posterior, we cannot store the posterior probability of every
configuration. However, from the BN in Fig. 2b, we see that
mi is independent ofmj; j 6¼ i, given f , b and zi (the Markov
blanket ofmi). Thus, we represent the posterior distribution
as follows:

P ðm; f; bjzÞ ¼ P ðf; bjzÞP ðmjf; b; zÞ

¼ P ðf; bjzÞ
YK
i¼1

P ðmijf; b; zÞ:

Here, the posterior can be stored using OðJ2Þ numbers2 for
P ðf; bjzÞand, for each configurationof f and b,OðKÞnumbers
for the probabilities P ðmijf; b; zÞ, i ¼ 1; . . . ; K, giving a total
storage requirement of OðKJ2Þ numbers. Using the fact that
P ðmijf; b; zÞ¼P ðmijf; b; ziÞ / P ðzi;mijf; bÞ¼P ðmijf; bÞ P ðzi
jmi; f; bÞ ¼ P ðmijfÞP ðzijmi; f; bÞ and substituting the defini-
tions of the conditional distributions, we have

P ðmi ¼1jf; b; zÞ ¼ �fiNðzi;�fi;  fiÞ
�fiNðzi;�fi;  fiÞ þð1� �fiÞN ðzi;�bi;  biÞ

:

WeneedonlystoreP ðmi ¼ 1jf; b; zÞ, sinceP ðmi ¼ 0jf; b; zÞ ¼
1� P ðmi ¼ 1jf; b; zÞ). For each i ¼ 1; . . . ; K and each config-
urationoff and b, this canbecomputedandnormalizedusing
a small number of multiply-adds. The total number of
multiply-adds needed to compute P ðmi ¼ 1jf; b; zÞ for all i
isOðKJ2Þ.
P ðf; bjzÞ can be computed as follows:

P ðf; bjzÞ ¼
X
m

P ðm; f; bjzÞ /
X
m

P ðm; f; b; zÞ

¼ �b�f
YK
i¼1

 X
mi

 
�mi

fi ð1� �fiÞ
1�miNðzi;�fi;  fiÞmi

Nðzi;�bi;  biÞ1�mi

!!

¼ �b�f
YK
i¼1

 
�fiNðzi;�fi;  fiÞ þ ð1� �fiÞ

N ðzi;�bi;  biÞ
!
:

For each value of f and b, this can be computed using OðKÞ
multiply-adds. Once it is computed for all J2 combinations
of f and b, the result is normalized to give P ðf; bjzÞ. The
total number of multiply-adds needed to compute P ðf; bjzÞ
is OðKJ2Þ. Combining this with the above technique, the
exact posterior over f , b, andm can be computed in OðKJ2Þ
multiply-adds and stored in OðKJ2Þ numbers.

When the parameters are not known, we must infer the
distribution over them, as well as the RVs. Assuming a
uniform parameter prior, the posterior distribution over
parameters and hidden RVs in the occlusion model of Fig. 4b
is proportional to the joint distribution given in (4). This
posterior can be thought of as a very large mixture model.
There are J2T2KT discrete configurations of the class RVs and
the mask RVs and, for each configuration, there is a
distribution over the real-valued parameters. In eachmixture

component, the class probabilities are Dirichlet-distributed
and themaskprobabilities areBeta-distributed. (TheBetapdf
is the Dirichlet pdf when there is only one free parameter.)
The pixel means and variances are coupled in the posterior,
but, given the variances, the means are normally distributed
and, given the means, the inverse variances are Gamma-
distributed. If the training data is processed sequentially,
where one training case is absorbed at a time, the mixture
posterior can be updated as shown in [5].

The exact posterior is intractable because the number of
posterior mixture components is exponential in the number
of training cases and the posterior distribution over the pixel
means and variances are coupled. In the remainder of this
paper, we describe a variety of approximate inference
techniques and discuss advantages and disadvantages of
each approach.

5.5 Approximate Inference as Minimizing Free
Energies

Usually, the above techniques cannot be applied directly
to P ðhjvÞ because this distribution cannot be computed
in a tractable manner. So, we must turn to various
approximations.

Many approximate inference techniques can be viewed as
minimizing a cost function called “free energy” [31], which
measures the accuracy of an approximate probability dis-
tribution. These include iterated conditional modes [3], the
expectation maximization (EM) algorithm [6], [31], varia-
tional techniques [22], [31] structured variational techniques
[22], Gibbs sampling [30], and the sum-product algorithm
(also known as loopy belief propagation) [23], [33].

The idea is to approximate the true posterior distribution
P ðhjvÞ by a simpler distribution QðhÞ, which is then used for
making decisions, computing estimates, summarizing the
data, etc. Here, approximate inference consists of searching
for the distribution QðhÞ that is closest to P ðhjvÞ. A natural
choice for a measure of similarity between the two
distributions is the relative entropy (also known as Kull-
back-Leibler divergence):

DðQ;P Þ ¼
Z
h

QðhÞ ln QðhÞ
P ðhjvÞ :

This is a divergence, not a distance, because it is not
symmetric: DðQ;P Þ 6¼ DðP;QÞ. However, DðQ;P Þ is simi-
lar to a distance in that DðQ;P Þ � 0 and DðQ;P Þ ¼ 0 if and
only if the approximating distribution exactly matches the
true posterior, QðhÞ ¼ P ðhjvÞ. The reason we use DðQ;P Þ
and notDðP;QÞ is that the former computes the expectation
with regard to the simple distribution, Q, whereas the latter
computes the expectation with regard to P , which is
generally very complex.3

Approximate inference techniques can be derived by
examining ways of searching for QðhÞ, to minimize
DðQ;P Þ. In fact, directly computing DðQ;P Þ is usually
intractable because it depends on P ðhjvÞ. If we already have
a tractable form for P ðhjvÞ to insert into the expression for
DðQ;P Þ, we may not have a need for approximate
inference. Fortunately, DðQ;P Þ can be modified in a way
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2. We use Oð�Þ to indicate the number of scalar memory elements or
binary scalar operations, up to a constant.

3. For example, if QðhÞ ¼
Q

i QðhiÞ, then DðP;QÞ ¼
R
h P ðhjvÞ ln

P ðhjvÞ�
P

i

R
hi
P ðhijvÞ lnQðhiÞ. Under the constraint

R
hi
QðhiÞ ¼ 1, the mini-

mum ofDðP;QÞ is given byQðhiÞ ¼ P ðhijvÞ. However, computing P ðhijvÞ is
an NP-hard problem, so minimizing DðP;QÞ is also an NP-hard problem.



that does not alter the structure of the search space of QðhÞ,
but makes computations tractable. If we subtract lnP ðvÞ
from DðQ;P Þ, we obtain

F ðQ;P Þ ¼ DðQ;P Þ � lnP ðvÞ

¼
Z
h

QðhÞ ln QðhÞ
P ðhjvÞ �

Z
h

QðhÞ lnP ðvÞ

¼
Z
h

QðhÞ ln QðhÞ
P ðh; vÞ :

ð6Þ

Notice that lnP ðvÞ does not depend on QðhÞ, so subtracting
lnP ðvÞ will not influence the search for QðhÞ. For BNs and
directed FGs, we do have a tractable expression for P ðh; vÞ,
namely, the product of conditional distributions.

If we interpret � lnP ðh; vÞ as the energy function of a
physical system and QðhÞ as a distribution over the state of
the system, then F ðQ;P Þ is equal to the average energy
minus the entropy. In statistical physics, this quantity is
called the free energy of the system (also known as Gibbs free
energy or Helmholtz free energy). Nature tends to minimize
free energies, which corresponds to finding the equilibrium
Boltzmann distribution of the physical system.

Another way to derive the free energy is by using Jensen’s
inequality to bound the log-probability of the visible RVs.
Jensen’s inequality states that a concave function of a convex
combinationofpoints inavector space isgreater thanor equal
to the convex combination of the concave function applied to
the points. To bound the log-probability of the visible RVs,
lnP ðvÞ ¼ lnð

R
h P ðh; vÞÞ, we use an arbitrary distributionQðhÞ

(a set of convex weights) to obtain a convex combination
inside the concave lnðÞ function:

lnP ðvÞ ¼ ln

 Z
h

P ðh; vÞ
!
¼ ln

 Z
h

QðhÞP ðh; vÞ
QðhÞ

!

�
Z
h

QðhÞ ln
 
P ðh; vÞ
QðhÞ

!
¼ �F ðQ;P Þ:

We see that the free energy is an upper bound on the negative
log-probability of the visible RVs: F ðQ;P Þ � � lnP ðvÞ. This
can also be seen by noting thatDðQ;P Þ � 0 in (6).

Free energy for i.i.d. training cases. From (5), for a
training set of T i.i.d. training cases with hidden RVs,
h ¼ ð�; hð1Þ; . . . ; hðT ÞÞ, and visible RVs, v ¼ ðvð1Þ; . . . ; vðT ÞÞ, we
have P ðh; vÞ ¼ P ð�Þ

QT
t¼1 P ðhðtÞ; vðtÞj�Þ. The free energy is

F ðQ;P Þ ¼
Z
h

QðhÞ lnQðhÞ �
Z
�

Qð�Þ lnP ð�Þ

�
XT
t¼1

Z
hðtÞ;�

Q hðtÞ; �
� �

lnP hðtÞ; vðtÞj�
� �

:

ð7Þ

The decomposition of F into a sum of one term for each
training case simplifies learning.

Exact inference revisited. The idea of approximate
inference is to search for QðhÞ in a space of models that are
simpler than the true posterior P ðhjvÞ. It is instructive to not
assume QðhÞ is simplified and derive the minimizer of
F ðQ;P Þ. The only constraint we put on QðhÞ is that it is
normalized:

R
h QðhÞ ¼ 1. To account for this constraint, we

form a Lagrangian from F ðQ;P Þwith Lagrange multiplier �
and optimize F ðQ;P Þ with regard to QðhÞ: @ðF ðQ;P Þ þ �R
h QðhÞÞ=@QðhÞ ¼ lnQðhÞ þ 1� lnP ðh; vÞ þ �. Setting this

derivative to 0 and solving for �, we find QðhÞ ¼
P ðh; vÞ=

R
h P ðh; vÞ ¼ P ðhjvÞ. So, minimizing the free energy

without any simplifying assumptions on QðhÞ produces
exact inference. Theminimum free energy isminQ F ðQ;P Þ ¼R
h P ðhjvÞ lnðP ðhjvÞ=P ðh; vÞÞ ¼ � lnP ðvÞ. The minimum free
energy is equal to the negative log-probability of the data.
This minimum is achieved when QðhÞ ¼ P ðhjvÞ.

Revisiting exact inference in the occlusion model. In the
occlusion model, if we allow the approximating distribution
Qðf; b;mÞ to beunconstrained,we find that theminimumfree
energy is obtained when Qðf; b;mÞ ¼ P ðf; bjzÞ

QK
i¼1 P ðmij

f; b; zÞ. Of course, nothing is gained computationally byusing
thisQ-distribution. In the following sections, we see how the
use of various approximate forms for Qðf; b;mÞ can lead to
tremendous speed-ups.

5.6 MAP Estimation as Minimizing Free Energy

Maximum a posteriori (MAP) estimation searches for
ĥh ¼ argmaxh P ðhjvÞ, which is the same as argmaxh P ðh; vÞ.
For discrete hiddenRVs,MAP estimationminimizesF ðQ;P Þ
using a Q-distribution of the form QðhÞ ¼ ½h ¼ ĥh�, where
½expr� ¼ 1 if expr is true and ½expr� ¼ 0 if expr is false. The free
energy in (6) simplifies to F ðQ;P Þ ¼

P
h½h ¼ ĥh� ln½h ¼

ĥh�=P ðh; vÞ ¼ � lnP ðĥh; vÞ, i.e., minimizing F ðQ;P Þ is equiva-
lent to maximizing P ðĥh; vÞ.

For continuous hidden RVs, the Q-distribution for a point
estimate is a Dirac delta function centered at the estimate:
QðhÞ¼�ðh� ĥhÞ. The free energy in (6) reduces to F ðQ;P Þ ¼R
h �ðh� ĥhÞ ln �ðh� ĥhÞ=P ðh; vÞ ¼ � lnP ðĥh; vÞ �H�, where H�

is the entropyof theDiracdelta. This entropydoesnotdepend
on ĥh, so minimizing F ðQ;P Þ corresponds to searching for
values of ĥh thatmaximizeP ðĥh; vÞ.4 Twopopularmethods that
use point inferences are iterated conditional modes and the
EM algorithm.

5.7 Iterated Conditional Modes (ICM)

The best-known example of ICM is k-means clustering,
where the hidden RVs are the cluster centers and the class
labels. Here, ICM iterates between assigning each training
case to the closest cluster center and setting each cluster
center equal to the average of the training cases assigned to
it. ICM is popular because it easy to implement. However,
ICM does not take into account uncertainties in hidden RVs
during inference, so it sometimes finds poor local minima.

ICM works by searching for a configuration of h that
maximizes P ðhjvÞ. The simplest version of ICM examines
each hidden RV hi, in turn, and sets the RV to its MAP value,
given all other RVs. Only the RVs that co-occur with hi in
conditional probability functions or potentials, i.e., theRVs in
the Markov blanket of hi, are relevant. Denote these RVs by
xMi

and denote the product of all conditional distributions or
potentials that depend on hi by fðhi; xMi

Þ. ICM proceeds as
follows:

Initialization. Pick values for all hidden RVs h (randomly
or cleverly).

ICM Step. Consider one of the hidden RVs, hi. Holding
all other RVs constant, set hi to its MAP value:

hi  argmaxhiP ðhijh n hi; vÞ ¼ argmaxhifðhi; xMi
Þ:
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4. In fact, H� ! �1. To see this, define �ðxÞ ¼ 1=� if 0 � x � � and 0
otherwise. Then, H� ¼ ln �, which goes to �1 as �! 0. This infinite penalty
in F ðQ;P Þ is a reflection of the fact that an infinite-precision point-estimate
of h does a very poor job of representing the uncertainty in h under P ðhjvÞ.



where h n hi is the set of all hidden RVs other than hi.
Repeat for a fixed number of iterations or until

convergence.

If hi is discrete, this procedure is straightforward. If hi is
continuous and exact optimization of hi is not possible, its
current value can be used as the initial point for a search
algorithm, such as a Newton method or a gradient-based
method.

The free energy for ICM is the free energy described
above, for general point inferences.

ICM in the occlusion model. Even when the model
parameters in the occlusion model are known, the compu-
tational cost of exact inference can be rather high. When the
number of clusters J is large, examining all J2 configura-
tions of the foreground class and the background class is
computationally burdensome. For ICM in the occlusion
model, the Q-distribution for the entire training set is

Q ¼
 Y

k

�ð�k � �̂�kÞ
! Y

k;i

�ð�ki � �̂�kiÞ
! Y

k;i

�ð ki �  ̂ kiÞ
!

 Y
k;i

�ð�ki � �̂�kiÞ
! Y

t

�
bðtÞ ¼ b̂bðtÞ

�!
 Y

t

�
f ðtÞ ¼ f̂f ðtÞ

�! Y
t

Y
i

�
m
ðtÞ
i ¼ m̂m

ðtÞ
i

�!
:

Substituting this Q-distribution and the P -distribution in (4)
into the expression for the free energy in (7), we obtain the
following (assuming a uniform parameter prior):

F ¼�
X
t

�
ln �̂�f̂fðtÞ þ ln �̂�b̂bðtÞ

�
�
X
t

 X
i

m̂m
ðtÞ
i ln �̂�f̂fðtÞi

þ 1� m̂mðtÞi
� �

ln 1� �̂�f̂f ðtÞi
� �!

þ
X
t

X
i

m̂m
ðtÞ
i

 
z
ðtÞ
i � �̂�f̂fðtÞi

� �2
=2 ̂ f̂fðtÞi þ ln 2� ̂ f̂f ðtÞi

� �
=2

!

þ
X
t

X
i

1� m̂mðtÞi
� � 

z
ðtÞ
i � �̂�b̂bðtÞi

� �2
=2 ̂ b̂bðtÞi

þ ln 2� ̂ b̂bðtÞi

� �
=2

!
�H:

H is the entropy of the �-functions and is constant during
optimization. F measures the mismatch between the input
image and the image obtained by combining the foreground
and background using the mask.

To minimize the free energy with regard to all RVs and
parameters,we can iteratively solve for eachRVor parameter
keeping the other RVs and parameters fixed. These updates
can be applied in any order, but since the model parameters
depend on values of all hidden RVs, we first optimize for all
hidden RVs and then optimize for model parameters.
Furthermore, since, for every observation, the class RVs
depend on all pixels, when updating the hidden RVs, we first
visit the mask values for all pixels and then the class RVs.

After all parameters and RVs are set to randomvalues, the
updatesareappliedrecursively, asdescribed inFig.5.Tokeep
notation simple, the “̂ ” symbol is droppedand in theupdates
for the variables mi, b, and f , the training case index ðtÞ is
dropped.

5.8 Block ICM and Conjugate Gradients

One problem with the simple version of ICM described
above is its severe greediness. Suppose fðhi; xMi

Þ has almost
the same value for two different values of hi. ICM will pick
one value for hi, discarding the fact that the other value of
hi is almost as good. This problem can be partly avoided by
optimizing subsets of h, instead of single elements of h. At
each step of this block ICM method, a tractable subgraph of
the graphical model is selected and all RVs in the subgraph
are updated to maximize P ðh; vÞ. Often, this can be done
efficiently using the max-product algorithm [23]. An
example of this method is training HMMs using the Viterbi
algorithm to select the most probable state sequence. For
continuous hidden RVs, an alternative to block ICM is to
use a joint optimizer, such as a conjugate gradients.

5.9 The Expectation-Maximization Algorithm

The EM algorithm accounts for uncertainty in some RVs,

while performing ICM-like updates for the other RVs.

Typically, for parameters � and remaining RVs hð1Þ; . . . ; hðT Þ,

EM obtains point estimates for � and computes the exact

posterior over the other RVs, given �. The Q-distribution is

QðhÞ ¼ �ð�� �̂�ÞQ ðhð1Þ; . . . ; hðT ÞÞ. Recall that for i.i.d. data

P ðh; vÞ ¼ P ð�Þð
QT

t¼1 P ðhðtÞ; vðtÞj�ÞÞ. Given �, the RVs asso-

ciated with different training cases are independent, so we

have QðhÞ ¼ �ð�� �̂�Þ
QT

t¼1QðhðtÞÞ. In exact EM, no restric-

tions are placed on the distributions, QðhðtÞÞ.
Substituting P ðh; vÞ and QðhÞ into (7), we obtain the free

energy:

F ðQ;P Þ ¼ � lnP ð�̂�Þ þ
XT
t¼1

 Z
hðtÞ
Q hðtÞ
� �

ln
Q hðtÞ
� �

P hðtÞ; vðtÞj�̂�
� �

!
:

EM alternates between minimizing F ðQ;P Þ with regard to
the set of distributions Qðhð1ÞÞ; . . . ; QðhðT ÞÞ in the E step, and
minimizing F ðQ;P Þ with regard to �̂� in the M step.

When updating QðhðtÞÞ, the only constraint is thatR
hðtÞ QðhðtÞÞ ¼ 1. As described earlier, this constraint is
accounted for by using a Lagrange multiplier. Setting the
derivative of F ðQ;P Þ to zero and solving for QðhðtÞÞ, we
obtain the solution, QðhðtÞÞ ¼ P ðhðtÞjvðtÞ; �̂�Þ. Taking the deri-
vative of F ðQ;P Þwith regard to �̂�, we obtain

@F ðQ;P Þ
@�̂�

¼� @

@�̂�
lnP ð�̂�Þ

�
XT
t¼1

 Z
hðtÞ
Q hðtÞ
� � @

@�̂�
lnP hðtÞ; vðtÞj�̂�

� �!
:

For M parameters, this is a set of M equations. These two
solutions give the EM algorithm:

Initialization. Choose values for the parameters �̂�
(randomly, or cleverly).

E Step. Minimize F ðQ;P Þ w.r.t. Q using exact inference,
by setting

Q hðtÞ
� �

 P hðtÞjvðtÞ; �̂�
� �

;

for each training case, given the parameters �̂� and the
data vðtÞ.

M Step. Minimize F ðQ;P Þ with regard to the model
parameters �̂� by solving
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� @

@�̂�
lnP ð�̂�Þ �

XT
t¼1

 Z
hðtÞ
Q hðtÞ
� � @

@�̂�
lnP hðtÞ; vðtÞj�̂�

� �!
¼ 0: ð8Þ

This is the derivative of the expected log-probability of the

complete data. For M parameters, this is a system of

M equations. Often, the prior on the parameters is assumed

to be uniform, P ð�̂�Þ ¼ const, in which case, the first term in

the above expression vanishes.
Repeat for a fixed number of iterations or until

convergence.

In Section 5.5, we showed that, when QðhÞ ¼ P ðhjvÞ,
F ðQ;P Þ ¼ � lnP ðvÞ. So, theEMalgorithmalternatesbetween
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Fig. 5a. Inference and learning algorithms for the occlusion model. Iverson’s notation is used, where ½expr� ¼ 1 if expr is true, and ½expr� ¼ 0 if expr is

false. The constant c is used to normalize distributions.



obtaininga tight lowerboundon lnP ðvÞand thenmaximizing

this bound with regard to the model parameters. This means

thatwith each iteration the log-probability of thedata, lnP ðvÞ,
must increase or stay the same.

EM in the occlusion model. As with ICM, we approx-
imate the distribution over the parameters using Qð�Þ ¼
�ð�� �̂�Þ. As described above, in the E step, we set
Qðb; f;mÞ  P ðb; f;mjzÞ for each training case, where, as
described in Section 5.4, P ðb; f;mjzÞ is represented in the
form P ðb; f jzÞ

Q
i P ðmijb; f; zÞ. This distribution is used in

the M step to minimize the free energy with regard to the
model parameters, � ¼ f�k; �k;  k; �kgKk¼1. The resulting
updates are given in Fig. 5, where we have dropped the
training case index in the E step for brevity and the constant c
is computed to normalize the appropriate distribution.
Starting with random parameters, the E and M steps are
iterated until convergence or for a fixed number of
iterations.

5.10 Generalized EM

The above derivation of the EM algorithm makes obvious
several generalizations, all of which attempt to decrease
F ðQ;P Þ [31]. If F ðQ;P Þ is a complex function of the
parameters �, it may not be possible to exactly solve for the
� that minimizes F ðQ;P Þ in the M step. Instead, � can be
modified so as to decrease F ðQ;P Þ, e.g., by taking a step
downhill in the gradient of F ðQ;P Þ. Or, if � contains many
parameters, it may be that F ðQ;P Þ can be optimized with
regard to one parameter while holding the others constant.
Althoughdoing this does not solve the systemof equations, it
does decrease F ðQ;P Þ.

Another generalization of EM arises when the posterior

distribution over the hidden RVs is too complex to perform

the exact update QðhðtÞÞ  P ðhðtÞjvðtÞ; �̂�Þ that minimizes

F ðQ;P Þ in the E step. Instead, the distribution QðhðtÞÞ from
the previous E step can be modified to decrease F ðQ;P Þ. In
fact, ICM is a special case of EMwhere, in the E step, F ðQ;P Þ
is decreased by finding the value of ĥh

ðtÞ
that minimizes

F ðQ;P Þ subject to QðhðtÞÞ ¼ �ðhðtÞ� ĥhðtÞÞ.

5.11 Gibbs Sampling and Monte Carlo Methods

Gibbs sampling is similar to ICM, but to circumvent local
minima, Gibbs sampling stochastically selects the value of
hi at each step instead of picking the MAP value of hi:

Initialization. Pick values for all hidden RVs h (ran-
domly or cleverly).

Gibbs Sampling Step. Consider one of the hidden RVs,
hi. Holding all other RVs constant, sample hi:

hi � P ðhijh n hi; vÞ ¼ fðhi; xMi
Þ=
�X

hi

fðhi; xMi
Þ
�
;

where xMi
are the RVs in the Markov blanket of hi and

fðhi; xMi
Þ is the product of all conditional distributions or

potentials that depend on hi.
Repeat for a fixed number of iterations or until

convergence.

Algorithmically, this is a minor modification of ICM, but,
in many applications, it is able to escape poor local minima
(cf., [14], [18]). Also, the stochastically chosen values of hi can
be monitored to estimate the uncertainty in hi under the
posterior.

If n counts the number of sampling steps, then as n!1
thenth configurationof thehiddenRVs is guaranteed tobean
unbiased sample from the exact posterior P ðhjvÞ. In fact,
although a single Gibbs sampler is not guaranteed to
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minimize the free energy, an infinite ensemble of Gibbs
samplers does minimize free energy, regardless of the initial
distribution of the ensemble. Let QnðhÞ be the distribution
over h given by the ensemble of samplers at step n. Suppose
we obtain a new ensemble by sampling hi in each sampler.
Then, Qnþ1ðhÞ ¼ Qnðh n hiÞP ðhijh n hi; vÞ. Substituting Qn

and Qnþ1 into (6), we find that Fnþ1 � Fn.
Generally, inaMonteCarlomethod, thedistributionoverh

is represented by a set of configurations h1; . . . ; hS . Then, the
expected value of any function of the hidden RVs, fðhÞ, is
approximated by E½fðhÞ�� 1

S

PS
s¼1 fðhsÞ. For example, if h

contains binary (0/1) RVs and h1; . . . ; hS are drawn from
P ðhjvÞ, then, by selecting fðhÞ ¼ hi, the above equation gives
an estimate of P ðhi ¼ 1jvÞ. There are many approaches to
sampling, but the two general classes of samplers are exact
samplers and Markov chain Monte Carlo (MCMC) samplers
(cf., [30]). Whereas exact samplers produce a configuration
with probability equal to the probability under the model,
MCMC samplers produce a sequence of configurations such
that, in the limit, the configuration is a sample fromthemodel.
If amodelP ðh; vÞ isdescribedbyaBN, thenanexact sampleof
h and v can be obtained by successively sampling each RV
given its parents, starting with parentless RVs and finishing
with childless RVs. Gibbs sampling is an example of an
MCMC technique.

MCMC techniques and Gibbs sampling in particular are
guaranteed to produce samples from the probability model
only after the memory of the initial configuration has
vanished and the sampler has reached equilibrium. For this
reason, the sampler is often allowed to “burn in” before
samples are used to compute Monte Carlo estimates. This
corresponds to discarding the samples obtained early on.

Gibbs sampling for EM in the occlusion model. Here,
we describe a learning algorithm that uses ICM-updates for
the model parameters, but uses stochastic updates for the
RVs. This technique can be viewed as a generalized EM
algorithm, where the E-Step is approximated by a Gibbs
sampler. Replacing the MAP RV updates in ICM with
sampling, we obtain the algorithm in Fig. 5. The notation
sampleb indicates the expression on the right should be
normalized with regard to b and then b should be sampled.

5.12 Variational Techniques and the Mean Field
Method

A problem with ICM and Gibbs sampling is that, when
updating a particular RV, they do not account for uncertainty
in the neighboring RVs. Clearly, a neighbor that is untrust-
worthy should count less when updating an RV. If exact EM
can be applied, then at least the exact posterior distribution is
used for a subset of the RVs. However, exact EM is often not
possible because the exact posterior is intractable. Also, exact
EM does not account for uncertainty in the parameters.

Variational techniques assume that QðhÞ comes from a
restricted family of distributions that can be efficiently
searched over. Inference proceeds by minimizing F ðQ;P Þ
with regard toQðhÞ, but the restriction onQðhÞ implies that a
tight bound, F ¼ � lnP ðvÞ, is not in general achievable. In
practice, the family of distributions is usually chosen so that a
closed form expression for F ðQ;P Þ can be obtained and
optimized.

The “starting point” when deriving variational techni-
ques is the product form (also known as fully factorized, or

mean-field) Q-distribution. If h consists of L hidden RVs
h ¼ ðh1; . . . ; hLÞ, the product form Q distribution is

QðhÞ ¼
YL
i¼1

QðhiÞ; ð9Þ

where there is one variational parameter or one set of
variational parameters that specifies the marginal QðhiÞ for
each hidden RV hi.

The advantage of the product form approximation is
most readily seen when P ðh; vÞ is described by a BN.
Suppose the kth conditional probability function or poten-
tial is a function of RVs hCk and vDk

and denote it by
gkðhCk ; vDk

Þ. So, P ðh; vÞ ¼
Q

k gkðhCk ; vDk
Þ. Substituting this

and (9) into (6), we obtain the mean field free energy:

F ðQ;P Þ ¼
X
i

 Z
hi

QðhiÞ lnQðhiÞ
!

�
X
k

 Z
hCk

 Y
i2Ck

QðhiÞ
!
ln gk hCk ; vDk
ð Þ

!
:

The high-dimensional integral over all hidden RVs simpli-
fies into a sum over the conditional probability functions of
low-dimensional integrals over small collections of hidden
RVs. The first term is the sum of the negative entropies of
the Q-distributions for individual hidden RVs. For many
scalar RVs (e.g., Bernoulli, Gaussian, etc.), the entropy can
be written in closed form quite easily.

The second term is the sum of the expected log-
conditional distributions or pontentials, where, for each
term, the expectation is taken with respect to the product of
theQ-distributions for the hiddenRVs. For appropriate forms
of the conditional distributions, this term can also be written
in closed form. For example, suppose P ðh1jh2Þ ¼ exp
ð� lnð2�	2Þ=2� ðh1 � ah2Þ2=2	2Þ (i.e., h1 is Gaussian with
mean ah2) andQðh1Þ andQðh2Þ are Gaussian with means 
11
and 
21 and variances 
12 and 
22. The entropy terms for h1
and h2 are� lnð2�e
12Þ=2 and� lnð2�e
22Þ=2. The other term
is the expected value of a quadratic form under a Gaussian,
which is straightforward to compute. The result is � ln
ð2�	2Þ=2� ð
11 � a
21Þ2=2	2 � 
12=2	2 � a2
22=2	2. These
expressions are easily-computed functions of the variational
parameters. Their derivatives (needed for minimizing
F ðQ;P Þ) can also be computed quite easily.

In general, variational inference consists of searching for
the value of the variational parameter 
 that minimizes
F ðQ;P Þ. For convex problems, this optimization is easy.
Usually, F ðQ;P Þ is not convex in Q and iterative optimiza-
tion is required:

Initialization. Pick values for the variational parameters,

 (randomly or cleverly).

Optimization Step. Decrease F ðQ;P Þ by adjusting the
parameter vector 
 or a subset of 
.

Repeat for a fixed number of iterations or until

convergence.

This variational technique accounts for uncertainty in both
the hidden RVs and the hidden model parameters. If the
amount of training data is small, a variational approximation
to the parameters can be used to represent uncertainty in the
model due to the sparse training data.
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Often, variational techniques are used to approximate the
distribution over the hidden RVs in the E step of the
EM algorithm, but point estimates are used for the model
parameters. In such variational EM algorithms, the
Q-distribution is QðhÞ ¼ �ð�� �̂�Þ

QT
t¼1QðhðtÞ;
ðtÞÞ. Note that

there is one set of variational parameters for each training
case. In this case,wehave the followinggeneralizedEMsteps:

Initialization. Pick values for the variational parameters

ð1Þ; . . . ; 
ðT Þ and the model parameters �̂� (randomly or
cleverly).

Generalized E Step. Starting from the variational para-
meters from the previous iteration, modify 
ð1Þ; . . . ; 
ðT Þ so as
to decrease F .

Generalized M Step. Starting from the model para-
meters from the previous iteration, modify �̂� so as to
decrease F .

Repeat for a fixed number of iterations or until
convergence.

Variational inference for EM in the occlusionmodel. The

fully factorizedQ-distributionover thehiddenRVsforasingle

data sample in the occlusion model is Qðm; f; bÞ ¼
QðbÞQðfÞ

QK
i¼1QðmiÞ. Substituting this Q-distribution into

the free energy for a single observed data sample in the

occlusion model, we obtain

F ¼
X
b

QðbÞ lnQðbÞ
�b
þ
X
f

QðfÞ lnQðfÞ
�f

þ
X
i

X
f

QðfÞ
 
Qðmi ¼ 1Þ lnQðmi ¼ 1Þ

�fi

þQðmi ¼ 0Þ lnQðmi ¼ 0Þ
1� �fi

!

þ
X
i

X
f

QðfÞQðmi ¼ 1Þ
 
ðzi � �fiÞ2

2 fi
þ ln 2� fi

2

!

þ
X
i

Qðmi ¼ 0Þ
 X

b

QðbÞ
 
ðzi � �biÞ2

2 bi
þ ln 2� bi

2

!!
:

The first two terms keepQðbÞ andQðfÞ close to their priors �b
and�f .The third termkeepsQðmiÞ close to themaskpriors�fi
for foreground classes that have high posterior probability

QðfÞ. The last two terms favor mask values and foreground/

background classes that minimize the variance-normalized

squared differences between the predicted pixel values and

the observed pixel values.
Setting the derivatives of F to zero, we obtain the updates

for the Q-distributions in the E step. Once the variational
parameters are computed for all observed images, the total
free energyF ¼

P
t F
ðtÞ is optimizedwith regard to themodel

parameters to obtain the variational M step. The resulting
updates are given in Fig. 5. Each E step update can be
computed in OðKJÞ time, which is a K-fold speed-up over
exact inference used for exact EM. This speed-up is obtained
because the variational method assumes that f and b are
independent in the posterior. Also, note that, if the
Q-distribitions place all mass on one configuration, the E step
updates reduce to the ICM updates The M step updates are
similar to the updates for exact EM, except that the exact
posterior distributions are replaced by their factorized
surrogates.

The above updates can be iterated in a variety of ways.
For example, each iteration may consist of repeatedly
updating the variational distributions until convergence
and then updating the parameters. Or, each iteration may
consist of updating each variational distribution once and
then updating the parameters. There are many possibilities
and the update order that is best at avoiding local minima
depends on the problem.

5.13 Structured Variational Techniques

The product-form (mean-field) approximation does not
account for dependencies between hidden RVs. For example,
if the posterior has two distinct modes, the variational
technique for the product-form approximation will find only
one mode. With a different initialization, the technique may
find another mode, but the exact form of the dependence is
not revealed. In structured variational techniques [22], the
Q-distribution is itself specified by a graphical model such
that F ðQ;P Þ can still be optimized. Fig. 6a shows the original
BN for the occlusion model and Fig. 6b shows the BN for the
fully factorized (mean field) Q-distribution described above.
Recall that the exact posterior can be written P ðm; f; bjzÞ ¼
Qðm; f; bÞ ¼ Qðf; bÞ

QK
i¼1Qðmijf; bÞ. Fig. 6c shows the BN for

this Q-distribution. Generally, increasing the number of
dependencies in the Q-distribution leads to more exact
inference algorithms, but also increases the computational
demands of variational inference. In the occlusion model,
whereas mean field inference takesKJ time, exact inference
takes KJ2 time. However, additional dependencies can
sometimes be accounted for at no extra computational cost.
Asdescribed below, it turns out that theQ-distribution shown
in Fig. 6d leads to an inference algorithm with the same
complexity as the mean field method (KJ time), but can
account for dependencies of themask RVs on the foreground
class.

Structured variational inference for EM in the occlusion
model. TheQ-distribution corresponding to the BN in Fig. 6d
isQðm; f; bÞ¼QðbÞQðfÞ

QK
i¼1QðmijfÞ. Defining qfi ¼ Qðmi ¼

1jfÞ, we have Qðm; f; bÞ ¼ QðbÞQðfÞ
QK

i¼1 q
mi

fi ð1� qfiÞ
1�mi .

Substituting this Q-distribution into the free energy for the
occlusion model, we obtain
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Fig. 6. Starting with the BN of the original occlusion model (a) variational
techniques ranging from the fully factorized approximation to exact
inference can be derived. (b) The BN for the factorized (mean field)
Q-distribution. z is observed, so it is not included in the graphical model
for the Q-distribution. (c) The BN for a Q-distribution that can represent
the exact posterior. (d) The BN for a Q-distribution that can represent
the dependence of the mask RVs on the foreground class. Accounting
for more dependencies improves the bound on the data likelihood, but
the choice of which dependencies are retained has a large impact on the
improvement in the bound.



F ¼
X
b

QðbÞ lnQðbÞ
�b
þ
X
f

QðfÞ lnQðfÞ
�f

þ
X
i

X
f

QðfÞ
 
Qðmi ¼ 1jfÞ lnQðmi ¼ 1jfÞ

�fi

þQðmi ¼ 0jfÞ lnQðmi ¼ 0jfÞ
1� �fi

!

þ
X
i

X
f

QðfÞQðmi ¼ 1jfÞ
 
ðzi � �fiÞ2

2 fi
þ ln 2� fi

2

!

þ
X
i

  X
f

QðfÞQðmi ¼ 0jfÞ
!

X
b

QðbÞ
 
ðzi � �biÞ2

2 bi
þ ln 2� bi

2

!!
:

Setting the derivatives of F to zero, we obtain the updates
given in Fig. 5. With some care, these updates can be
computed in OðKJÞ time, which is a K-fold speed-up over
exact inference. Although the dependencies of f and mi,
i ¼ 1; . . . ; K on b are not accounted for, the dependence ofmi

on f is accounted for by the qfis. The parameter updates in
the M step have a similar form as for exact EM, except that
the exact posterior is replaced by the above, structured
Q-distribution.

5.14 The Sum-Product Algorithm and (Loopy) Belief
Propagation

The sum-product algorithm (also known as belief propaga-
tion, probability propagation) performs inference by passing
messages along the edges of the graphical model (see [23] for
an extensive review). The message arriving at an RV is a
probability distribution (or a function that is proportional to a
probability distribution) that represents the inference for the
RV as given by the part of the graph that the message came
from.Pearl [33] showed that the algorithmis exact if thegraph
is a tree. When the graph contains cycles, the sum-product
algorithm (also known as “loopy belief propagation”) is not
exact andcandivergeandoscillate.However, it hasbeenused
invision algorithms [8]. Surprisingly,wehave also found that
its oscillatory behavior canbeused to jumpbetweenmodes of
the posterior. Also, it has produced state-of-the-art results on
several difficult problems, including error-correcting decod-
ing [13],medical diagnosis [28], random satisfiability [26], and
phase-unwrapping in two dimensions [12].

To see how the sum-product algorithm works, consider
computing P ðaÞ in the model P ða; b; c; dÞ ¼ P ðajbÞP ðbjcÞ
P ðcjdÞP ðdÞ. One approach is to compute P ða; b; c; dÞ for all
values of a, b, c, and d and then compute P ðaÞ ¼

P
b

P
c

P
d

P ða; b; c; dÞ. For binary RVs, this takes ð3þ 1Þð2 � 2 � 2 � 2Þ
operations. Alternatively, we can move the sums inside the
products: P ðaÞ ¼

P
b P ðajbÞf

P
c P ðbjcÞ½

P
d P ðcjdÞP ðdÞ�g. If

the terms are computed from the innermost term out, this
takes ð3Þð2þ 2þ 2Þ operations, giving an exponential speed-
up in the number of RVs. The computation of each term in
braces corresponds to the computation of a message in the
sum-product algorithm.

In a graphical model, the joint distribution can be written
P ðh; vÞ ¼

Q
k gkðhCk ; vDk

Þ, where hCk and vDk
are the hidden

and visible RVs in the kth local function (or conditional
distribution). The sum-product algorithm approximates
P ðhjvÞ by QðhÞ, where QðhÞ is specified by marginals QðhiÞ

and clique marginals QðhCkÞ. These are computed by
combining messages that are computed iteratively in the
FG.Denote themessage sent fromvariablehi to function gk by
�ikðhiÞ and denote the message sent from function gk to
variable hi by �kiðhiÞ. Note that the message passed on an
edge is a function of the neighboring variable. A user-
specifiedmessage-passing schedule is used to determine which
messages should be updated at each iteration. The sum-
product algorithm proceeds as follows:

Initialization. Set all messages to be uniform.
Message Update Step. Update the messages specified in

the message-passing schedule. The message sent from
variable hj to function gk is updated as follows:

�jkðhjÞ  c
Y

n:j2Cn;n 6¼k
�njðhjÞ; ð10Þ

where c is computed so as to normalize the message. The
message sent from function gk to variable hj is updated as
follows:

�kjðhjÞ  c
X
hCknj

 
gkðhCk ; vDk

Þ
Y

i2Ck;i 6¼j
�ikðhiÞ

!
; ð11Þ

where Ck n j is the set of indices Ck with j removed.
Fusion. A single-variable marginal or clique marginal

can be computed at any time as follows:

QðhjÞ  c
Y

n:j2Cn
�njðhjÞ; ð12Þ

QðhCkÞ  c gkðhCk ; vDk
Þ
Y
i2Ck

�ikðhiÞ: ð13Þ

Repeat for a fixed number of iterations or until
convergence.

If the graph is a tree, once messages have flowed from
every node to every other node, the estimates of the posterior
marginals are exact. So, if the graph has E edges, exact
inference is accomplished by propagating 2E messages
according to the following message-passing schedule. Select
one node as the root and arrange the nodes in layers beneath
the root. Propagate messages from the leaves to the root
(E messages) and then propagate messages from the root to
the leaves (anotherEmessages). This procedure ensures that
messages flow from every node to every other node. Note
that, if the graph is a tree, if normalizations are not performed
during message-passing, the fusion equations compute the
joint probability of the hidden variable(s) and the observed
variables:

Q
n:j2Cn �njðhjÞ ¼ P ðhj; vÞ.

If the graph contains cycles, messages can be passed in
an iterative fashion for a fixed number of iterations until
convergence is detected or until divergence is detected.
Also, various schedules for updating the messages can be
used and the quality of the results may depend on the
schedule. It is proven in [35] that, when the “max-product”
algorithm converges, all configurations that differ by
perturbing the RVs in subgraphs that contain at most one
cycle will have lower posterior probabilities.

If the graphical model is a BN, so that Z ¼ 1, the sum-
product algorithm can be used for inference in a general-
ized EM algorithm as follows:
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Initialization. Pick values for the model parameters �
(randomly or cleverly) and set all messages to be uniform.

Generalized E Step. For each training case vðtÞ, apply one
or more iterations of the sum-product algorithm. Then, fuse
messages as described above to compute QðhðtÞCkÞ for every
child and its parents.

Generalized M Step. Modify the parameters � so as to
maximize X

t

X
k

X
h
ðtÞ
Ck

QðhðtÞCkÞ ln gkðh
ðtÞ
Ck
; v
ðtÞ
Dk
; �Þ:

Repeat for a fixed number of iterations or until
convergence.

The sum-product algorithm for EM in the occlusion
model. For an occlusionmodel withK pixels, exact inference
takesOðKJ2Þ time. In contrast, loopybeliefpropagation takes
OðKJÞ time, assuming the number of iterations needed for
convergence is constant. Generally, the computational gain
from using loopy belief propagation is exponential in the
number of RVs that combine to explain the data.

The graphical model has cycles, so, before applying the
sum-product algorithm, we modify it to reduce the number
of cycles, as shown in in Fig. 7a, where the observed pixels
z1; . . . ; zK are not shown for visual clarity. For each pixel i,
there is one local function gi that combines the conditional
distributions for each mask RV and its corresponding pixel:

giðf; b;miÞ ¼ P ðzijmi; f; bÞP ðmijfÞ ¼ N ðzi;�fi;  fiÞmi

Nðzi;�bi;  biÞ1�mi�mi

fi ð1� �fiÞ
1�mi :

Fig. 7b shows how we have labeled the messages along the
edges of the FG. During message passing, some messages
will always be the same. In particular, a message leaving a
singly connected function node will always be equal to the
function. So, the messages leaving the nodes corresponding
to P ðfÞ and P ðbÞ are equal to P ðfÞ and P ðbÞ, as shown in
Fig. 7b. Also, a message leaving a singly-connected variable
node will always be equal to the constant 1. So, the
messages leaving the mask RVs, mi, are 1. Initially, all other
messages are set to the value 1.

Before updatingmessages in the graph,wemust specify in
what order themessages should be updated. This choice will
influence how quickly the algorithm converges and, for
graphswith cycles, can influence whether or not it converges
at all.Messages can be passed until convergence or for a fixed
amount of time. Here, we define one iteration to consist of
passingmessages from the gs to b, from b to the gs, from the gs
to f , from f to the gs, and from the gs to thems. Each iteration

ensures that each RV propagates its influence to every other
RV. Since the graph has cycles, this procedure should be
repeated.

The message updates are derived from the general rules
described above. From (11), it is straightforward to show
that the message sent from gi to f should be updated
as follows: �fi ðfÞ  

P
b

P
mi
�biðbÞ � 1 � giðf; b;miÞ. Note that,

since the resulting message is a function of f alone, b andmi

must be summed over. Substituting giðf; b;miÞ from above
and assuming that �biðbÞ is normalized, this update can be
simplified: �fi ðfÞ  �fiNðzi;�fi;  fiÞ þ ð1� �fiÞ

P
b �

b
iðbÞN

ðzi;�bi;  biÞ. The last step in computing this message is to
normalize it: �fi ðfÞ  �fi ðfÞ=ð

P
f �

f
i ðfÞÞ.

According to (10), themessage sent from f to gi is given by
the product of the other incomingmessages, �fi ðfÞ  �f

Q
j6¼i

�fi ðfÞ, and it is then normalized: �fi ðfÞ �fi ðfÞ=ð
P

f �
f
i ðfÞ.

The message sent from gi to b is given by �biðbÞ  
P

fP
mi
�fi ðfÞ � 1 � giðf; b;miÞ, which simplifies to �biðbÞ  

�P
f

�fi ðfÞ�fiNðzi;�fi;  fiÞ
�
þ
�P

f �
f
i ðfÞð1� �fiÞ

�
Nðzi;�bi;  biÞ.

Note that the terms in large parentheses don’t depend on b,

so they need to be computed only once when updating this

message. Again, before proceeding, the message is normal-

ized: �biðbÞ  �biðbÞ=ð
P

b �
b
iðbÞÞ.

The message sent from b to gi is given by �biðbÞ  
�b
Q

j 6¼i �
b
iðbÞ and then normalized: �biðbÞ  �biðbÞ=ð

P
b �

b
iðbÞ.

Finally, the message sent from gi to mi is updated as

follows: �mi ðmiÞ  
P

f

P
b �

f
i ðfÞ � �biðbÞ � giðf; b;miÞ. Formi ¼

1 and mi ¼ 0, this update simplifies to �mi ð1Þ  
P

f �
f
i ðfÞ

�fiNðzi;�fi;  fiÞ and �mi ð0Þ  
�P

f �
f
i ðfÞð1� �fiÞ

��P
b �

b
iðbÞ

N ðzi;�bi;  biÞ
�
. Normalization is performed by setting

�mi ðmiÞ  �mi ðmiÞ=ð�mi ð0Þ þ �mi ð1ÞÞ.
At any point during message-passing, the fusion rule in

(12) can be used to estimate posterior marginals of variables.

TheestimatesofP ðf jzÞ,P ðbjzÞandP ðmijzÞareQðfÞ  
�
�f
Q

i

�fi ðfÞ
�
=
�P

f �f
Q

i �
f
i ðfÞ

�
, QðbÞ  

�
�b
Q

i �
b
iðbÞ
�
=
�P

b �b
Q

i �
b
i

ðbÞ
�
, and QðmiÞ  �mi ðmiÞ. It is common to compute these

during each iteration. In fact, computing the posterior

marginals is often useful as an intermediate step for more

efficiently computing other messages. For example, direct

implementation of the above updates for �fi ðfÞ requires order
JK2 time. However, if QðfÞ is computed first (which takes

order JK time), then �fi ðfÞ can be updated in order JK time

using �fi ðfÞ  QðfÞ=�fi ðfÞ, followed by normalization.
Fig. 5 shows the generalized EM algorithm where the

E step uses the sum-product algorithm. Whereas algorithms
presented earlier have one update for each variable (whether
in terms of its value or its distribution), the sum-product
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Fig. 7. (a) The FG for the occlusion model with K pixels after the observations (z1; . . . ; zK ) are absorbed into function nodes,
giðf; b;miÞ ¼ P ðzijmi; f; bÞP ðmijfÞ. (b) The sum-product algorithm (belief propagation) passes messages along each edge of the graph. This
graph fragment shows the different types of messages propagated in the occlusion model.



algorithm has one update for each edge in the graph. Note
that, when updating QðbÞ and QðfÞ, whereas variational
methods adjust the effect of each likelihood term by raising it
to a power, the sum-product algorithm adds an offset that
depends on how well the other hidden variables account for
the data. In the M step, we have used a factorized
approximation to Qðmi; fÞ and Qðmi; bÞ. In fact, these clique
marginals can be computed using (13) to obtain a more exact
M step.

The sum-product algorithm as a variationalmethod. The
sum-product algorithm can be thought of as a variational
technique. Recall that, in contrast to product-formvariational
techniques, structured variational techniques account for
more of the direct dependencies (edges) in the original
graphical model by finding Q-distributions over disjoint
substructures (subgraphs). However, one problem with
structured variational techniques is that dependencies in-
duced by the edges that connect the subgraphs are accounted
for quite weakly through the variational parameters in the
Q-distributions for the subgraphs. In contrast, the sum-
product algorithmuses a set of subgraphs that cover all edges
in the original graph and accounts for every direct depen-
dence approximately, using one or moreQ-distributions.

To derive the sum-product algorithm as a variational
method,wefollow[37].Asdescribedearlier, thesum-product
algorithm approximates P ðhjvÞ by QðhÞ, where QðhÞ is
specified by marginals QðhiÞ and clique marginals QðhCkÞ.
Notice that these sets of marginals cover all edges in the
graphical model. Substituting the expression for P ðh; vÞ into
(6), the free energy is F ¼

P
h QðhÞ lnQðhÞ�

P
k

P
hCk

QðhCkÞ
ln gkðhCk ; vDk

Þ. The second term is a local expectation that can
usually be computed or approximated efficiently. However,
since we don’t have a factorized expression forQðhÞ, the first
term is generally intractable.WecanapproximateQðhÞ inside
the logarithm using the Bethe approximation: QðhÞ �
ð
Q

k QðhCkÞÞ=ð
Q

i QðhiÞ
di�1Þ, where di is the degree of hi, i.e.,

the number of terms QðhCkÞ that hi appears in. The denomi-
nator is meant to account for the overlap between the clique
marginals. For trees, the Bethe approximation is exact
(cf., [24]).

Substituting the Bethe approximation for the term
lnQðhÞ, we obtain the Bethe free energy FBethe, which
approximates the true free energy, FBethe � F :

FBethe ¼
X
k

X
hCk

QðhCkÞ lnQðhCkÞ �
X
i

ðdi � 1Þ

X
hi

QðhiÞ lnQðhiÞ �
X
k

X
hCk

QðhCkÞ ln gkðhCk ; vDk
Þ:

This approximation becomes exact if the graph is a tree. If
the graph is not a tree, we can still try to minimize FBethe

with regard to QðhCkÞ and QðhiÞ, but, during optimization,
the marginals may not be consistent with any probability
distribution on h. The statistical physics community has
developed more complex, but more accurate approxima-
tions, such as the Kikuchi approximation, which can be
used to derive inference algorithms [37].

The minimization of FBethe must account for the margin-
alization constraints, 8k :

P
hCk

QðhCkÞ ¼ 1, 8i :
P

hi
QðhiÞ

¼ 1, and 8k; 8i 2 Ck :
P

hCkni
QðhCkÞ ¼ QðhiÞ, where Ck n i is

the set of indices Ck with i removed. The last constraint
ensures that the single-variable marginals and the clique

marginals agree. Denote the Lagrange multipliers for these
constraints by �k, i, and �ikðhiÞ, where the last multiplier
depends on the value hi since there is one constraint for each
value of hi. Setting the derivatives of FBethe subject to these
constraints to 0, we obtain QðhjÞdj�1 /

Q
k:j2Ck e

�jkðhjÞ and
QðhCkÞ / gkðhCk ; vDk

Þ
Q

i2Ck e
�ikðhiÞ.

The sum-product algorithmcanbeviewedas an algorithm
that recursively computes the Lagrange multipliers, �ikðhiÞ,
so as to satisfy the above two equations and the margin-
alization constraint everywhere in the network. In the
standard form of the sum-product algorithm, we define
�ikðhiÞ ¼ e�ikðhiÞ to be a “message” sent from variable hi to
function gk. Using this notation, the equations and the
marginalization constraint give the following system of
equations: QðhjÞdj�1 /

Q
k:i2Ck �jkðhjÞ, QðhCkÞ / gkðhCk ; vDk

ÞQ
i2Ck �ikðhiÞ, and

P
hCkni

QðhCkÞ ¼ QðhiÞ.
One way of solving the system is to find a set of update

equations whose fixed points satisfy the system. To do this,
introduce “messages” that are sent from functions to vari-
ables:�kjðhjÞ is amessage sent from function gk to variable hj.
A fixed point of the sum-product updates in (10) to (13)
satisfies the system of equations. From (10), we have

Y
k:i2Ck

�jkðhjÞ¼
Y
k:i2Ck

Y
n:j2Cn;n 6¼k

�njðhjÞ¼
 Y
n:j2Cn

�njðhjÞ
!dj�1

:

Combiningthiswith(12),weobtain
Q

k:i2Ck �jkðhjÞ¼QðhjÞ
dj�1,

which satisfies the first equation in the system. The second

equation is satisfied trivially by sum-product update (13). To

see how the third equation is satisfied, first sum over hCknj in

(13)andthenuse (11) toobtain
P

hCknj
QðhCkÞ / �jk ðhjÞ�kjðhjÞ.

Then, substitute �jkðhjÞ from (10) and use (12) to obtainP
hCknj

QðhCkÞ /
Q

n:j2Cn �njðhjÞ / QðhjÞ, which satisfies the

third equation.

5.15 Annealing

In all of the above techniques, when searching for QðhÞ,
local minima of F can be a problem. One way to try to avoid
local minima is to introduce an inverse temperature, �:
F ð�Þ ¼

R
h QðhÞ lnQðhÞ=P ðh; vÞ

�. When � ¼ 0, P ðh; vÞ� is
uniform and inference is easy. When � ¼ 1, P ðh; vÞ� ¼
P ðh; vÞ and F ð�Þ ¼ F , the free energy we want to minimize.
By searching over Q while annealing the system—adjusting
� from 0 to 1—the search may avoid local minima. In
practice, the use of annealing raises the difficult question of
how to adjust � during inference.

6 COMPARISON OF ALGORITHMS

Each of the above techniques iteratively updates an
approximation to the exact posterior distribution while
searching for a minimum of the free energy. It is useful to
study how the behaviors of the algorithms differ. In Table 1,
we give the update equations for the mask variables in the
occlusion model. These updates have been written in a
slightly different form than presented in Fig. 5, to make
comparisons between different methods easier.

Whereas exact inference computes thedistributionovermi

for every configuration of the neighboring variables b and f ,
ICMandGibbs sampling select anewvalueofmi basedon the
single current configuration of b and f . Whereas updating all
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mask variables takes J2K time for exact inference, it takes

K time for ICM and Gibbs sampling.
The update for the distribution QðmiÞ over mi in the

mean field (fully factorized) variational method can be

compared to the update for exact inference. The updates are

similar, but an important difference is that each term that

depends on f or b is replaced by its geometric average with

regard to the current distribution QðfÞ or QðbÞ. Each such

geometric average takes J time and there are K mask

variables, so updating all mask variables takes JK time.
In the structured variational method, the dependence of

mi on f is taken into account. The update for the distribution

QðmijfÞ is similar to the update in themean fieldmethod, but

the geometric averages for terms that depend on f are not

taken (since oneQ-distribution is computed for each value of

f). The term that depends on b does not depend on f , so its

geometric averagewith regard to b can be computed once for

all f . The resulting updates for all mask variables take

JK time,which is the same as for themean fieldmethod. This

example shows that, sometimes, accounting for more

dependencies does not significantly increase the time-

complexity of a variational method.
Comparing the update for QðmiÞ in the sum-product

algorithm with the corresponding update in the fully

factorized variational method, we see that the geometric

averages are replaced with arithmetic averages. This is an

important difference between the two methods. While the

geometricaveragefavorsvaluesofmi thathavehighweight in

all terms, the arithmetic average favors values ofmi that have

highweight inat leastone term. In this sense, thesum-product

algorithm is more “inclusive” of possible configurations of

hidden variables than fully factorized variational methods.

Another difference between these twomethods is that, while

thevariationalmethod takesaverageswith regard to the same

distribution for all pixels, QðfÞ or QðbÞ, the sum-product

algorithm uses pixel-specific distributions, �fi ðfÞ or �biðbÞ.

7 EXPERIMENTAL RESULTS

We explored the following algorithms for learning the
parameters of the occlusion model using the data illustrated
inFig. 1: ICM, exact EM,Gibbs sampling; variational EMwith
a fully factorized posterior, structured variational EM, and
the sum-product algorithm for EM. TheMATLAB scripts we
used are available on our Web sites.

We found that the structured variational method
performed almost identically to the fully factorized varia-
tional method, so we do not report results on the structured
variational method. Generally, there usually are structured
variational approximations that produce bounds that are
significantly better than mean field, but are much more
computationally efficient than exact inference.

Each technique can be tweaked in a variety of ways to
improve performance. However, our goal is to provide the
reader with a “peek under the hood” of each inference
engine and convey a qualitative sense of the similarities and
differences between the techniques, so we strove to make
the initial conditions, variable/parameter update schedules,
etc., as similar as possible. For details of training conditions,
see the MATLAB scripts posted on our Web sites.

The learningalgorithmsare at best guaranteed to converge
to a local minimum of the free energy, which is an upper
bound on the negative log-likelihood of the data. A common
local minimum is a set of images in which some of the true
classes in the data are repeated while the others are merged
into blurry images. To help avoid this type of localminimum,
we provided the model with 14 clusters—two more than the
total number of different foregrounds and backgrounds. (If
too many clusters are used, the model tends to overfit and
learn specific combinations of foreground and background.)

Each learning algorithm was run five times with different
random initializations and the run with the highest log-
likelihoodwas kept. For complexmodels, computing the log-
likelihood is intractable and the free energywasused instead.
The pixels in the class means were initialized to independent
values drawn from the uniform density in ½0; 1Þ, the pixel
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TABLE 1
A Comparison of the Updates for the Mask Variables for Various Algorithms Discussed in This Paper



variances were set to 1, and the mask probability for each

pixelwas set to 0:5.All classeswere allowed tobeused inboth

foreground and background images. To avoid numerical

problems, the model variances and the prior and posterior

probabilities ondiscreteRVs f; b;miwerenot allowed todrop

below 10�6.

Fig. 8 shows the parameters after convergence of the
learning algorithms and Fig. 9 shows the free energy as a
function of the number of computations needed during
learning. Most techniques managed to find all classes of
appearance, but the computational requirements varied by
two orders of magnitude. However, the greediest technique,
ICM, failed to find all classes. The ability to disambiguate
foreground and background classes is indicated by the
estimated mask probabilities � (see, also, the example in
Fig. 11), as well as the total posterior probability of a class
being used as a background (b), and foreground (f ).

Exact EM for the most part correctly infers which of the
classes are used as foreground or background. The only
error it made is evident in the first two learned classes,
which are sometimes swapped to model the combination of
the background and foreground layers, shown in the last
example from the training set in Fig. 1. This particular
combination (12 images in the data set) is modeled with
class 2 in the background and class 1 in the foreground. This
is a consequence of using 14 classes, rather than the required
12 classes. Without class 2, which is a repeated version of
class 6, class 6 would be correctly used as a foreground class
for these examples. The other redundancy is class 13, which
ends up with a probability close to zero, indicating it is not
used by the model.

The variational technique does not properly disambiguate
foreground from background classes, as is evident from the
total posterior probabilities of using a class in each layer f

and b. For the classes that exact EM always inferred as
background classes, the variational technique learned masks
probabilities that allow cutting holes in various places in
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Fig. 8. Comparison of the learned parameters of the model in Section 2.1 using various learning methods. For each method, we show the mask
probabilities �k, pixel means �k, and pixel variances  k for each class k as images, where black indicates a variance of 0. For exact EM and
variational EM, we also show the total posterior probability that each class is used in modeling the foreground (f ) and background (b):
fk ¼ 1

T

P
t Qðf ðtÞ ¼ kÞ, bk ¼ 1

T

P
tðbðtÞ ¼ kÞ. These indicate when a class accounts for too much or too little data. Note that there is no reason for the

same class index for two techniques to correspond to the same object.

Fig. 9. Free energy versus number of floating-point operations used

during training for ICM, exact EM, and EM using Gibbs sampling,

variational inference, and the sum-product algorithm in the E step.



order toplace the classes in the foregroundandshowthe faces
behind them. The mask probabilities for these classes show
outlines of faces and have values that are between zero and
one, indicating that the corresponding pixels are not con-
sistentlyusedwhen the class ispicked tobe in the foreground.
Such mask values reduce the overall likelihood of the data
and increase the variational free energy because the mask
likelihood P ðmijfÞ ¼ �mi

fi ð1� �fiÞ
1�mi has the highest value

when �fi is either 0 or 1 and mi has the same value.
Consequently, the variational free energy is always some-
what above the negative likelihood of the data for any given
parameters (see Fig. 10a). Similar behavior is evident in the
results of other approximate learning techniques that effec-
tively decouple the posterior over the foreground and
background classes, such as loopy belief propagation (last
column of Fig. 8) and the structured variational technique.
Note that small differences in free energy may or may not
indicate a difference in the visual quality of the solution.

Oneconcernthat is sometimesraisedaboutminimizing the
free energy is that the approximateQ-distributionused for the
hidden RVsmay not be well-suited to the model, causing the
free energy to be a poor boundon the negative log-likelihood.

However, as pointed out in [17], since the free energy is
F ðQ;P Þ ¼ DðQ;P Þ � lnP ðvÞ (see (6)), if two models fit the
data equally well (lnP ðvÞ is the same), minimizing the free
energy will select the model that makes the approximate
Q-distributionmore exact (select P to minimizeDðQ;P Þ).

We see this effect experimentally in Fig. 10. In Fig. 10a, we
show the free energy for the variational mean-field method
during 30 iterations of learning. In this case, a single iteration
corresponds to the shortest sequence of steps that update all
variational parameters (QðbÞ; QðfÞ; QðmiÞ for each training
case) and allmodel parameters. In the sameplot,we show the
truenegative log-likelihoodafter each iteration.Wealso show
the point estimate of the free energy,which is evaluated at the
modes of the variational posterior. Since the parameters are
updated using the variational technique, the variational
bound is the only one of the curves that theoretically has to be
monotonic. While the negative of the log-likelihood is
consistently better than the other estimates, the bound does
appear to be relatively tight most of the time. Note that, early
on in learning, the point estimate gives a poor bound, but,
after learning is essentially finished, thepoint estimate gives a
good bound. The fact that ICM performs poorly for learning,
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Fig. 10. How good are the free energy approximations to the negative log-likelihood? In (a), we compare the mean-field variational free energy, the

point estimate free energy, and the negative log-likelihood during variational EM. In (b), we compare the same three quantities during exact EM. To

further illustrate the advantage of modeling uncertainty in the posterior, in (c), we show the point-estimate free energy and the negative log-likelihood

during ICM learning. In (d), we compare the same two quantities during Gibbs sampling EM.



but performs well for inference after learning using a better
technique indicates the importance of accounting for un-
certainty early in the learning process.

As shown in Fig. 10b, if the same energies are plotted for
the parameters after each iteration of exact EM, the curves
converge by the fifth iteration. Here, the mean-field
variational free energy is computed using the factorized
posterior QðfÞQðbÞ

Q
i QðmiÞ fitted by minimizing the

KL distance to the exact posterior P ðf; b;mjzÞ, while the
point estimate is computed by further discarding every-
thing but the peaks in the variational posterior. When the
posterior is still broad early in the learning process, the
variational posterior leads to a tighter bound on the
negative log-likelihood than the point estimate. However,

the point estimate catches up quickly as EM converges and
the true posterior itself becomes peaked.

If the parameters are updated using ICM (which uses
point estimates), as shown in Fig. 10c, poor local minima are
found and both the free energy and the true negative log-
likelihood are significantly worse than the same quantities
found using exact EM and variational EM. Also, even after
convergence, the point estimate free energy is not a tight
bound on the negative log-likelihood.

These plots are meant to illustrate that, while fairly severe
approximations of the posterior can provide a tight bound
near the local optimumof the log-likelihood, it is the behavior
of the learning algorithm in the early iterations that
determines how close an approximate technique will get to
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Fig. 11. An illustration of learning using loopy belief propagation (the sum-product algorithm). For each iteration, we show: (a) model parameters,
including mask priors, mean, and variance parameters for each class, and (b) inferred distribution over the mask and the most likely foreground and
background class for two of the 300 training cases. Although the algorithm (Section 5.14) converges quickly, it cannot escape a local minimum
caused by an overly greedy decision made in the very first iteration in which the foreground object is placed into the background layer for the first
illustrated training case. In this local minimum, some “background classes” (e.g., k ¼ 12) are used as foregrounds (see the mask). An additional two
iterations of exact EM (Section 5.9), which uses the exact posterior Qðf; bÞQðmjf; bÞ, allows the inference process to flip the foreground and
background where needed and escape the local minimum (see the mask of class k ¼ 12 after EM).



a local optimum of the the true log-likelihood. In the early
iterations, to give the model a chance to get to a good local
optimum, the model parameters are typically initialized to
model broad distributions, allowing the learning techniques
to more broadly explore the space of possibilities through
relatively flat posteriors (e.g., in our case, we initialize the
variances to be equal to one, corresponding to a standard
deviation of 100percent of thedynamic range of the image). If
the approximate posterior makes greedy decisions early in
the learning process, it is often difficult to correct the errors in
later iterations. ICM, while very fast, is the most greedy of all
the techniques. Even if variances are initialized to large
values, ICMmakes poor, greedy decisions for the configura-
tion of the hidden RVs early on in learning and does not
recover from these mistakes.

Importantly, even computationally simple ways of ac-
counting for uncertainty can improve performance signifi-
cantly, in comparison with ICM. In Fig. 10d, we show the
point estimate free energy and the negative log-likelihood
when the ICMtechnique ismodified to take someuncertainty
into account byperformingaGibbs sampling step for eachRV
instead of picking the most probable value.5 This method
does not increase the computational cost per iteration
compared to ICM, but it obtains much better values of both
energies. Sampling sometimes makes the free energy worse
during the learning, but allows the algorithm to account for
uncertainty early on,when the trueposterior distributions for
RVs are broad. While this single-step Gibbs sampling
technique obtains better energies than ICM, it does not
achieve the lower energies obtained by exact EM and
variational EM.

The effect of approximate probabilistic inference on the
visual quality of the parameters is illustrated in Fig. 11,where
we show how the model parameters change during several
iterations of EMwhere the E step is performedusing the sum-
product algorithm. On the far right of the figure, we illustrate
the inference over hidden RVs (foreground class f , back-
ground class b, and the maskm) for two training cases. After
the first iteration, while finding good guesses for the classes
that took part in the formation process, the foreground and
background are incorrectly inverted in the posterior for the
first training case and this situation persists even after
convergence. Interestingly, by applying an additional two
iterations of exact EM after 30 iterations of sum-product EM,
the model leaves the local minimum. This is evident not only
in the first trainingcase, but also in the restof the trainingdata,
as evidenced by the erasure of holes in the estimated mask
probabilities for the background classes. The same improve-
ment can be observed for the variational technique. In fact,
adding a small number of exact EM iterations to improve the
results of variational learning can be seen as part of the same
framework of optimizing the variational free energy, except
that not only the parameters of the variational posterior, but
also its form can be varied to increase the bound at each step.

When the nature of the local minima to which a learning
technique is susceptible iswell understood, it is oftenpossible
to changeeither themodel or the formof theapproximation to
the posterior to avoid these minima without too much extra
computation. In the occlusion model, the problem is the
background-foreground inversion, which can be avoided by
simply testing the inversion hypothesis and switching the

inferred background and foreground classes to check if this
lowers the free energy, rather than exploring all possible
combinations of classes in the exact posterior.An elegantway
of doing this within the variational framework is to add an
additional “switch”RV to themodel,which, in the generative
process, can switch the two classes. Then, the mean field
posterior would have a component that models the un-
certaintyabout foreground-background inversion.While this
would render the variational learning two times slower, it
would still be much faster than the exact EM.

8 FUTURE DIRECTIONS

In our view, themost interesting and potentially high-impact
areas of current research include introducing effective
representations andmodels of data; inventing new inference
and learning algorithms that can efficiently infer combinator-
ial explanations of data; developing real-time, or near-real-
time, modular software systems that enable researchers and
developers to evaluate the effectiveness of combinations of
inference and learning algorithms for solving real-world
tasks; advancing techniques for combining information from
multiple sources, e.g., camera images, spectral features,
microphones, text, tactile information, etc.; developing
inference algorithms for active tasks, that effectively account
for uncertainties in the sensory inputs and the model of the
environment whenmaking decisions about investigating the
environment. In our view, a core requirement in all of these
directions of research is that uncertainty should be properly
accounted for, both in the representations of problems and in
adapting to new data. Large-scale, hierarchical probability
models and efficient inference and learning algorithms will
play a large role in the successful implementation of these
systems.
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