
CS540 Spring 2010: homework 6

All references are to the 19feb10 version of my book. Also, please download pmtk 19feb10 version or newer.

1 Imputation using mixtures of Gaussians
The function mixGaussImputationDemo samples some data from a mixture ofK Gaussians, “hides” some of the
entries, fits a single Gaussian to the partially observed data using EM (sec 7.4), and then uses the estimated parameters
to compute the posterior mean of the hidden variables (sec 7.3.1). This method only works well if K = 1 (see
gaussImputationDemo for this special case), since modeling multi-modal data with 1 Gaussian does not work
well. Your job is to improve this situation.

1. Derive the equations to compute p(xh|xv,θ) for a mixture model, where h are the hidden components and v
are the visible components.

2. Implement your equations as a function called mixGaussImpute, with the same interface as gaussImpute.
Apply your method to mixGaussImputationDemo, using the true (generating) parameters to do inference.
Turn in new scatter plot and R2 values.

3. Now derive the EM equations to fit a GMM (by MLE) when some components of the feature vector are missing,
including the equations to compute the likelihood of a partially observed data vector.

4. Implement your equations as a function called mixGaussMissingFitEm, with a similar interface to gaussFitMissingEm.
Also implement a function called mixGaussLogprob. You can use this to check that EM monotonically in-
creases the observed data log-likelihood.

5. Apply your method to mixGaussImputationDemo, where you impute using the estimated parameters. Turn
in your scatter plot and R2 values.

2 EM for group lasso
Read 13.5.2–13.5.3, 13.6.4. Then modify linregFitSparseEm so it solves the group lasso problem. (You need
to set the shape parameter for the Gamma prior according to the size of each group.) Apply your method to the data in
linregGroupLassoDemo. Compare your results. (You should get the same answer; I don’t know how the speed
compares.)

3 Bayesian lasso
Read sec 13.5.2. Consider the following piece of the model
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Show that the posterior for τ2
j is an inverse Gaussian distribution
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4 LLA for SCAD
Read sec 13.6.6. Implement the LLA algorithm for optimizing linear regression with the SCAD regularizer. (See
scadPlot for some handy functions.) Apply your method to the synthetic data used in linregSparseEmSynthDemo
(be sure to use the same random number seed). Add your method to the list of existing methods and create new box-
plots (as in fig 13.12) and plots of the weights. Turn in your code and figures.

5 Nearest shrunken centroids classifier
(Source: Ex 18.2 of [HTF09])

1. Show that the solution to 12.104 is given by 12.105–12.109, where sj is the pooled standard deviation for feature
j.

2. Implement the algorithm and apply it to the SRBCT dataset available from http://www-stat.stanford.
edu/˜tibs/ElemStatLearn/data.html. Try to reproduce figs 12.9–12.10 of my book. (See [HTF09,
sec 18.2] for details. Recall that this book is available online for free at http://www-stat.stanford.
edu/˜tibs/ElemStatLearn/download.html.) Turn in your code and figures.
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