
CS540 Spring 2010: homework 5

This homework requires that you read the new “Regularized discriminant analysis” and “MAP estimation for EM”
handouts, and download the latest version of PMTK (5feb2010).

1 Mode of an Inverse Wishart distribution
Show that

arg max IW(Σ|S0, ν0) =
S0

ν0 +D + 1
(1)

Hint: The proof of this is very similar to the derivation of the MLE of Σ on p188 of the book.

2 Derivation of the mode of an NIW distribuiton
Consider the distribution NIW(µ,Σ|m0, κ0,S0, ν0). Show that the joint mode of this is given by

µ̂ =
m0

κ0
(2)

Σ̂ =
S0

ν0 +D + 2
(3)

Hint: see section 30.11 of the book for some helpful identities from matrix calculus.

3 Derivation of the NIW posterior
Show that the posterior for µ,Σ under a Gaussian likelihood using a conjugate NIW prior has the following form:

p(µ,Σ|D) = NIW(µ,Σ|mn, κn, νn,Sn) (4)

mn =
κ0m0 +Nx

κn
=

κ0

κ0 +N
m0 +

N

κ0 +N
x (5)

κn = κ0 +N (6)
νn = ν0 +N (7)

Sn = S0 + Sx +
κ0N

κ0 +N
(x−m0)(x−m0)T (8)

Hint: see the appendix of [FR05] for some very helpful algebraic identities. (Essentially the answer is already there,
but it is somewhat buried by a mass of notation.) I have put this paper on the class web page for convenience.

4 The Wishart distribution and friends
An alternative to using an inverse Wishart distribution on the covariance matrix is to use a Wishart distribution on the
precision matrix Λ = Σ−1. This is defined as

Wi(Λ|S0, ν0) ∝ |Λ|(ν0−D−1)/2 exp
(
−1

2
tr(ΛS−1

0 )
)

(9)
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Similarly, one can define

NW(µ,Λ|m0, η0, ν0,S0)
def= N (µ|m0, (η0Λ)−1)×Wi(Λ|S0, ν0) (10)

This formulation is widely used in machine learning, whereas the NIW formulation is more popular in statistics. Hence
it is useful to have results in both forms.

1. Derive the mode of a Wishart distribution.

2. Derive the joint mode of an NW distribution.

3. Derive the posterior for µ,Σ assuming a NW prior and a Gaussian likelihood.

5 MAP EM for GMMs
Implement MAP estimation for GMMs using a NIW or NW prior. Set the hyper-parameters as described in the
handout. Plot the log likelihood plus log prior vs iteration, and check it increases monotonically (on any dataset you
choose, e.g., old faithful).
Then create a synthetic data set on which ML estimation fails (due to a singular Σ̂k) but MAP estimation succeeds.
(Remember to set your random number seed to ensure reproducibility.)
Bonus points: make a plot of the fraction of times ML and MAP fails (i.e., have numerical problems) vsD, for various
K and fixed N , averaging over multiple random restarts, as well as multiple random data sets. (I think you’ll find that
MAP never fails, whereas MLE becomes increasingly prone to fail as either D or K increase.)
Turn in your code and plot.

6 EM for mixtures of Students
Implement the EM algorithm for finding the MLE of a mixture of Student distributions. Estimate µk, Σk and νk for
each cluster k. Call the function mixStudentFitEm.
Apply mixStudentFitEm and mixGaussFitEm (part of pmtk) to the N = 66,D = 2 bankruptcy data set on the
class website, using K = 2 clusters. The first column of this file specifies if a firm went bankrupt or not; the second
column specifies the ratio of retained earnings (RE) to total assets; and the third column specifies the raio of earnings
before itnerests and taxes (EBIT) to total assets. Ignore the first column for fitting purposes (i.e., do unsupervised
clustering).
Now try to reproduce Figure 1. In particular, for each model, plot the 90% level sets of each component. Superimpose
the data on the plot, using the true labels to specify the type of symbol (circle for bankrupt, triangle for solvent). Then
perform a hard clustering of each data point, and if the estimated cluster assignment zi does not equal the true class
label yi, count it as an error and color the symbol red. (Try both possible interpretations of the latent labels, and pick
the one with the lowest overall error rate.) What error rates do you get for each model on the training set?1 Turn in
your code, plots and error rates.
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1Kenneth Lo found that the mixture of Gaussians made 21 errors, and that the mixture of Students made 18 errors. You should be able to
reproduce these numbers. (The reason the Gaussian model is worse is because there are a few outliers in the bankrupt class, which adversely effects
the estimate of the covariance matrix for that cluster.)
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(a)

(b)

Figure 1: (a) Mixture of 2 Gaussians fit to bankrupty data. (b) Mixture of 2 Students fit to bankrupty data. Source: Figure 3.3 of
[Lo09].
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