
CS540 Spring 2010: homework 4

1 Logistic regression vs LDA/QDA
(Source: Jaakkola)
Suppose we train the following binary classifiers via maximum likelihood.

1. GaussI: A generative classifier, where the class conditional densities are Gaussian, with both covariance matrices
set to I (identity matrix), i.e., p(x|y = c) = N (x|µc, I). We assume p(y) is uniform.

2. GaussX: as for GaussI, but the covariance matrices are unconstrained, i.e., p(x|y = c) = N (x|µc,Σc).

3. LinLog: A logistic regression model with linear features.

4. QuadLog: A logistic regression model, using linear and quadratic features (i.e., polynomial basis function
expansion of degree 2).

After training we compute the performance of each model M on the training set as follows:

L(M) =
1
n

n∑
i=1

log p(yi|xi, θ̂,M) (1)

(Note that this is the conditional log-likelihood p(y|x, θ̂) and not the joint log-likelihood p(y,x|θ̂).) We now want to
compare the performance of each model. We will write L(M) ≤ L(M ′) if model M must have lower (or equal) log
likelihood (on the training set) than M ′, for any training set (in other words, M is worse than M ′, at least as far as
training set logprob is concerned). For each of the following model pairs, state whether L(M) ≤ L(M ′), L(M) ≥
L(M ′), or whether no such statement can be made (i.e., M might sometimes be better thanM ′ and sometimes worse);
also, for each question, briefly (1-2 sentences) explain why.

1. GaussI, LinLog.

2. GaussX, QuadLog.

3. LinLog, QuadLog.

4. GaussI, QuadLog.

5. Now suppose we measure performance in terms of the average misclassification rate on the training set:

R(M) =
1
n

n∑
i=1

I(yi 6= ŷ(xi)) (2)

Is it true in general that L(M) > L(M ′) implies that R(M) < R(M ′)? Explain why or why not.

2 Decision boundary for LDA with semi tied covariances
Consider a generative classifier with class conditional densities of the form N (x|µc,Σc). In LDA, we assume Σc =
Σ, and in QDA, each Σc is arbitrary. Here we consider the 2 class case in which Σ1 = kΣ0, for k > 1. That is, the
Gaussian ellipsoids have the same “shape”, but the one for class 1 is “wider”. Derive an expression for p(y = 1|x,θ),
simplifying as much as possible. Give a geometric interpretation of your result, if possible.
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Figure 1: Projection of 11-class 10-dimensional vowel data to 2d using Fisher’s LDA. The dark black circles are the class means.
Source: Figure 4.11 of [HTF09].

Figure 2: Example of right-censored data. The circles are the censored points, the arrow heads are the imputed values, and the line
is the line fit to the imputed and uncensored data. Source: Figure 5.6 of [Tan96]

3 Fisher’s LDA applied to vowel data
1. Consider the vowel data from [HTF09]. The training data is available (as a text file) from http://www-stat.

stanford.edu/˜tibs/ElemStatLearn/datasets/vowel.train. You can use the dlmread func-
tion to parse this file. Use the following code fragment to compute a 2d dimensional projection of the data: [B,
Z] = pcaPmtk(Xtrain, 2). Plot the projected data Z, color coded by class. Compute the class condi-
tional means µc ∈ R10 and plot their 2d projection too. Turn in your code and plot.

2. Implement the multi-class version of Fisher’s LDA. You may assume SW is invertible, and hence you just need
to find the first K eigenvectors of S−1

W SB . Project the data and the means projected onto this 2d subspace. The
result should look similar to Figure 1. (At least I think it should: the details on how this figure was created are
not given in on [HTF09, p118]. Note that this book is available online for free from http://www-stat.
stanford.edu/˜tibs/ElemStatLearn/download.html if you want to read more about what they
did.) Turn in your code and plot. (You can use plotDecisionBoundary to get the boundaries.)

4 EM for censored linear regression
This exercise is about the EM algorithm for censored linear regression discussed in section 2.1 of the EM handout
https://people.cs.ubc.ca/˜murphyk/passwordProtected/handoutEmRegClassif.pdf.
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Note that there is an error in equation 10 of that handout. The correct result is

E [zi|θ, zi ≥ ci] = µi + σH(
ci − µi

σ
) (3)

where we have defined

H(u) def=
φ(u)

1− Φ(u)
(4)

1. Show that

E
[
z2
i |θ, zi ≥ ci

]
= µi + σ2 + σ(ci + µi)H

(
ci − µi

σ

)
(5)

2. Derive the M step for σ2.

3. Implement the algorithm and apply it to the Schmee and Hahn data discussed in section 2.2 of th EM hand-
out. That is, use a linear regression model to predict yi = log10(i’th failure time), using covariate xi =
1000/(temperature at 273.2). What are the estimated parameters? As a sanity check, [Tan96, p69] got the
following results, after 16 iterations of EM:

ŵ0 = −6.019, ŵ1 = 4.311, σ̂ = 0.2592 (6)

4. Plot the data and the censored and predicted values (on the same axes), giving a result similar to Figure 2. Plot
the line fit by EM, as well as the line fit to the raw data (ignoring the fact that some values were censored).

Turn in your code, numbers and plot.

5 EM for robust regression with a Student T noise model
This exercise is about the EM algorithm for robust linear regression discussed in section 3.1.1 of the EM handout
https://people.cs.ubc.ca/˜murphyk/passwordProtected/handoutEmRegClassif.pdf. (More
details can be found in [LLT89].)

1. Implement the EM algorithm assuming the dof ν is fixed. (Weighted least squares is discussed on pdf p314 of
my book.)

2. Apply it to linregRobustDemo. How do your results compare to using gradient descent?

3. Apply your method to the famous stack loss data shown in Figure 3(a). That is, fit a model of the form

yi = β0 +
∑

j

βjxij + εi (7)

Try the following values for the dof: ν ∈ {∞, 8, 4, 3, 2, 1.1, 1, 0.5}. For each such value, compute the log-
likelihood on the training set, and the print the MLE of the parameters. Your results should be similar to
Figure 3(b).
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Figure 3: (a) Stack loss data. Source: Table 2.9 of [MK97]. (b) Results on this data using various models. Source: Table 2.10 of
[MK97].
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