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1 Normalization constant for a 1D Gaussian
The normalization constant for a zero-mean Gaussian is given by

Z =
∫ b

a

exp
(
− x2

2σ2

)
dx (1)

where a = −∞ and b = ∞. To compute this, consider its square

Z2 =
∫ b

a

∫ b

a

exp
(
−x2 + y2

2σ2

)
dxdy (2)

Let us change variables from cartesian (x, y) to polar (r, θ) using x = r cos θ and y = r sin θ. Since dxdy = rdrdθ,
and cos2θ + sin2 θ = 1, we have

Z2 =
∫ 2π

0

∫ ∞

0

r exp
(
− r2

2σ2

)
drdθ (3)

Evaluate this integral and hence show Z = σ
√

(2π). Hint 1: separate the integral into a product of two terms, the first
of which (involving dθ) is constant, so is easy. Hint 2: if u = e−r2/2σ2

then du/dr = − 1
σ2 re−r2/2σ2

, so the second
integral is also easy (since

∫
u′(r)dr = u(r)).

2 Normalization constant for a multidimensional Gaussian
Prove that the normalization constant for a d-dimensional Gaussian is given by

(2π)d/2|Σ|
1
2 =

∫
exp(− 1

2 (x− µ)T Σ−1(x− µ))dx (4)

Hint: diagonalize Σ and use the fact that |Σ| =
∏

i λi to write the joint pdf as a product of d one-dimensional
Gaussians in a transformed coordinate system. (You will need the change of variables formula: see p511.) Finally, use
the normalization constant for univariate Gaussians.

3 Bivariate Gaussians
Let X ∼ N (µ,Σ) where X ∈ R2 and

Σ =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
(5)

where ρ is the correlation coefficient. Show that the pdf is given by

p(x1, x2) =
1

2πσ1σ2

√
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exp
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2(1− ρ2)
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σ2
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(6)
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4 Class conditional densities for binary data
Consider a generative classifier for C classes with class conditional density p(x|y) and uniform class prior p(y).
Suppose all the d features are binary, xj ∈ {0, 1}. If we assume all the features are conditionally independent (the
naive Bayes assumption), we can write

p(x|y = c) =
d∏

j=1

Ber(xj |θjc) (7)

This requires dC parameters.

1. Now consider a different model, which we will call the “full” model, in which all the features are fully dependent
(i.e., we make no factorization assumptions). How might we represent p(x|y = c) in this case? How many
parameters are needed to represent p(x|y = c)?

2. Assume the number of features d is fixed. Let there be n training cases. If the sample size n is very small, which
model (naive Bayes or full) is likely to give lower test set error, and why?

3. If the sample size n is very large, which model (naive Bayes or full) is likely to give lower test set error, and
why?

4. What is the computational complexity of fitting the full and naive Bayes models as a function of n and d? Use
big-Oh notation. (Fitting the model here means computing the MLE or MAP parameter estimates. You may
assume you can convert a d-bit vector to an array index in O(d) time.)

5. What is the computational complexity of applying the full and naive Bayes models at test time to a single test
case?

6. Suppose the test case has missing data. Let xv be the visible features of size v, and xh be the hidden (missing)
features of size h, where v + h = d. What is the computational complexity of computing p(y|xv, θ̂) for the full
and naive Bayes models, as a function of v and v?

5 Gaussian decision boundaries
(Source: [? , Q3.7])
Let p(x|y = j) = N (x|µj , σj) where j = 1, 2 and µ1 = 0, σ2

1 = 1, µ2 = 1, σ2
2 = 106. Let the class priors be equal,

p(y = 1) = p(y = 2) = 0.5.

1. Find the decision region
R1 = {x : p(x|µ1, σ1) ≥ p(x|µ2, σ2)} (8)

Sketch the result. Hint: draw the curves and find where they intersect. Find both solutions of the equation

p(x|µ1, σ1) = p(x|µ2, σ2) (9)

Hint: recall that to solve a quadratic equation ax2 + bx + c = 0, we use

x =
−b±

√
b2 − 4ac

2a
(10)

2. Now suppose σ2 = 1 (and all other parameters remain the same). What is R1 in this case?
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(a) (b)

Figure 1: (a) Examples of how to represent a sentence as a bag of words. (b) A small document × word co-occurrence matrix for
900 dicuments and 600 words. A black dot in row i column j means document i contains word j at least once. The first 450 lines
correspond to the documents about X windows, the second 450 lines to documents about MS windows. Can you see a difference
in the patterns between the first 450 rows and the second 450 rows? Figure produced by docDataPlot.

6 Naive Bayes classifier for email spam filtering (Matlab)
(Source: Jaakkola)
To solve this problem, use the file naiveBayesExCode.zip.
Consider the problem of classifying messages posted to online discussion boards. We consider two classes: messages
about X Windows (class 1) and messages about microsoft Windows (class 2). (This is analogous to email spam
filtering, which we will consider below; we start with this smaller problem to help you debug your code.) There are
900 documents from each class; we divided them into training and text sets of equal size. To save space (and time),
we ran word detection on the documents, and the data available to you consists of binary feature vectors for each
document. Upon loading docdata.mat the Matlab environment will contain

Name Size Bytes Class Attributes
vocab 600x1 43914 cell
xtest 900x600 147412 double sparse
xtrain 900x600 152884 double sparse
ytest 900x1 7200 double
ytrain 900x1 7200 double

xtrain(i,w)=1 iff document i contains word w, otherise xtrain(i,w)=0. Note that xtrain and xtest
are sparse matrices, since most entries are zero. You can visualize sparse matrices using the spy command: see
Figure 1(b). The identity of the 600 words is stored in the cell array vocab. You can print out the first 10 words using

cellfun(@(x) sprintf(’%s’,x), vocab(1:10),’UniformOutput’,false)

which produces

Columns 1 through 7
’straight’ ’magazines’ ’issues’ ’ray’ ’enabled’ ’head’ ’improved’

Columns 8 through 10
’thread’ ’libs’ ’working’

1. Implement the following function

function theta = NBtrain(X,Y)
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% Posterior mean estimate of Naive Bayes parameters
% Input:
% X(i,j) = 1 if word j appears in document i, otherwise X(i,j)=0
% Y(i) = class label of doc i (assumed to be 1 or 2)
% Output:
% theta(j,c) = probability of word j appearing in class c

which computes the following posterior mean estimate

θ̂jc =
Njc + 1
Nc + 2

(11)

where Njc counts the number of times word j appears in class c, Nc is the total number of documents in class
c, and we have assumed a Beta(1,1) prior. Turn in your code.

2. Implement a function to classify each document, assuming uniform class priors p(Y = 1) = p(Y = 2) = 0.5.

function y = NBapply(X,theta)
% X(i,j) = 1 if word j appears in document i, otherwise X(i,j)=0
% theta(j,c) = prob of word j in class c
% y(i) = most probable class for X(i,:)

Here y(i) = arg maxc p(y = c|X(i, :)) is the most probable class label for document i. Since p(Y = c|x) ∝
p(x|Y = c) is a small number, you will need to use logs to avoid underflow. (You don’t necessarily need the
logsumexp trick, because it suffices to compute the log likelihood p(x|y) rather than the normalized posterior
p(y|x), but you will need to use logs somehow!) Turn in your code.

3. Use NBtrain on the data in xtrain,ytrain. Compute the misclassification rates (i.e., the number of
documents that you mis-classified) on the training set (by using NBapply on xtrain,ytrain) and on the
test set (by using NBapply on xtest,ytest). Sanity check: You should get test error of 0.1867.

4. The provided function NBcv computes the K-fold cross-validation error. (This calls your functions NBtrain
and NBapply.) K = 1 means no cross-validation, that is error is simply computed on the whole training set.
Use this to compute the 10-fold error rate on the training set. How does this compare to the (non cross validated)
training and test error?

5. Plot (as histograms) the class-conditional densities p(xj = 1|y = c,θc) for classes c = 1, 2 and words j = 1 :
600. You should get the same result as Figure ??.

6. What are the 5 most likely words in each class?

7. It is clear that the most probable words are not very discriminative. One way to measure how much information
a word (feature) Xj ∈ {0, 1} conveys about the class label Y ∈ {1, 2} is by computing the mutual information
between Xj and Y , denoted I(Xj , Y ), and defined as

mi(j) = I(Xj , Y ) =
1∑

x=0

2∑
c=1

p(Xj = x, Y = c) log
p(Xj = x, Y = c)

p(Xj = x)p(Y = c)
(12)

If we assume equal class priors, p(Y = 1) = p(Y = 2) = 0.5, then

p(Xj = 1, Y = c) = p(Xj |Y = y)p(Y = c) =
θjc

2
(13)

Use the provided function MI to compute the 5 words with the highest mutual information with the class label.
(Use the θ’s estimated on xtrain,ytrain.) List the words along with the corresponding values of MI. (As a
sanity check, the first word should be “windows” with an MI of 0.2150.)
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Figure 2: Test error rate vs number of features, in order of decreasing MI.

8. You will now apply the code you wrote in the previous question to a much larger data set (so your computer
will need much more time and memory: on my laptop, with 1GB of RAM, it takes about 4–5 minutes to solve
this part of the problem.) Consider the problem of classifying email messages into spam and non-spam (ham).
There are 1000 spam emails and 2000 ham emails in our collection; we divided them into training and text
sets of equal size and class ratio. We consider 10,000 words. Upon loading emaildata.mat, the Matlab
environment will contain

Name Size Bytes Class Attributes
vocab 1x10000 745408 cell
xtest 1500x10000 4043516 double sparse
xtrain 1500x10000 4043516 double sparse
ytest 1x1500 12000 double
ytrain 1x1500 12000 double

Now xtrain(i,w) contains the number of times word w occurs in document i; thus it is not a binary matrix.
vocab is a cell array, as before. Convert the X data (training and test) to binary (word present/ absent) form
and fit a naive Bayes classifier using your code from above. What is the training and test error? Hint: if you run
out of memory, use the ’clear’ command to remove variables once they are no longer needed. Also, consider
using single precision.

9. What are the 5 most likely words in each class? List them with their probability.

10. Use the provided function MI.m to compute the 5 words with the highest mutual information with the class
label. (Use the θ’s estimated on xtrain,ytrain.) List the words along with the corresponding values of MI.
(As a sanity check, the first word should be “our” with an MI of 0.23376.)

11. Plot the error rate on the test set as a function of the number of features used, in order of decreasing mutual
information. You should get a plot like Figure 2 (using a number of features in the range 5:500:10000). Turn in
your code and plot. How many features should we use, and why?
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