CS540 Machine learning
Lecture 12
Feature selection
Midterm

grade distribution

<table>
<thead>
<tr>
<th>Grade</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>6</td>
</tr>
<tr>
<td>A</td>
<td>3</td>
</tr>
<tr>
<td>A-</td>
<td>5</td>
</tr>
<tr>
<td>B+</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>C+</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
</tr>
</tbody>
</table>
Q1
Q4
Outline

• Problem formulation
• Filter methods
• Wrapper methods
• L1 methods
Feature selection

• If predictive accuracy is the goal, often best to keep all predictors and use L2 regularization

• We often want to select a subset of the inputs that are “most relevant” for predicting the output, to get sparse models – interpretability, speed, possibly better predictive accuracy
Bayesian formulation

• Let m specify which of the 2^d subsets of variables to use (bit vector)

\[
p(m|\mathcal{D}) \propto p(\mathcal{D}|m)p(m)
\]

\[
p(\mathcal{D}|m) = \int \prod_i p(y_i|x_i, w, m)p(w|m)dw
\]
Statistical problem

- What if we cannot evaluate marginal likelihood $p(D|m)$?
- Cannot use MLE since will always pick largest subset
Penalized likelihood

- Common to pick the model that minimizes

\[J(m) = -\log p(D|m) + \lambda \text{complexity}(m) \]

- Eg complexity(m) = \#chosen variables
- For linear regression

\[J(m) = \text{RSS}(w) + \lambda \|w\|_0, \quad w = (X(:, m)^T X(:, m))^{-1} X(:, m)^T y \]
Computational problem

- 2^d subsets to evaluate
Filter methods

- Compute “relevance” of X_j to Y marginally
- Computationally efficient
Correlation coefficient

- Measures extent to which X_j and Y are linearly related

$$\rho_{X_j,Y} = \frac{\text{Cov}(X_j, Y)}{\sqrt{\text{Var}(X_j)\text{Var}(Y)}}$$
Anscombe’s quartet

\[\rho = 0.81 \]
Mutual information

- Can model non-linear non-Gaussian dependencies

\[
I(X_j, Y) = \int \int p(x_j, y) \log \frac{p(x_j, y)}{p(x_j)p(y)} dx_j dy
\]

- If assume \(p(X, Y) \) is Gaussian, recover correlation coef. Can use non-parametric density estimates to get better estimate.

- For discrete data, can estimate \(p(X, Y) \) by counting.

\[
I(X_j, Y) = \sum_{x_j} \sum_{y} p(x_j, y) \log \frac{p(x_j, y)}{p(x_j)p(y)}
\]

\[
\hat{p}(x_j = a, y = b) = \frac{\sum_i I(x_{ij} = a, y = b)}{n}
\]
MI for NB with binary features

\[
I(X_j, Y) = \sum_{x=0}^{1} \sum_{c=1}^{C} p(X_j = x, y = c) \log \frac{p(X_j = x|y = c)p(y = c)}{p(X_j = x)p(y = c)}
\]

\[
= \sum_{x=0}^{1} \sum_{c} p(X_j = x|y = c)p(y = c) \log \frac{p(X_j = x|y = c)}{p(X_j = x)}
\]

\[
= \sum_{c} p(X_j = 1|y = c)p(y = c) \log \frac{p(X_j = 1|y = c)}{p(X_j = 1)}
\]

\[
+ \sum_{c} p(X_j = 0|y = c)p(y = c) \log \frac{p(X_j = 0|y = c)}{p(X_j = 0)}
\]

\[
= \sum_{c} \left[\theta_{jc} \pi_c \log \frac{\theta_{jc}}{\theta_j} + (1 - \theta_{jc}) \pi_c \log \frac{1 - \theta_{jc}}{1 - \theta_j} \right]
\]
What’s wrong with filter methods

- Interaction effects (e.g., SNPs)
Wrapper methods

- Perform discrete search in model space
- “Wrap” search around standard model fitting
- Forwards selection, backwards selection, heuristic algorithms (GAs, SLS, SA, etc)
- Need efficient way to evaluate score of models m' in neighborhood of m
Forward selection for linear regression

- At each step, add feature that maximally reduces residual error.
- If choose j, should set its weight to be the orthogonal projection of r onto column j

$$J(w_j) = ||r - x_j w_j||_2^2 = r^T r + w_j^2 x_j^T x_j - 2w_j x_j^T r$$

$$\frac{dJ}{dw_j} = 0$$

\[\hat{w}_j = \frac{x_j^T r}{x_j^T x_j} \]

homework
Choosing the best feature

- Inserting formula for optimal w_j

$$J(\hat{w}_j) = r^T r + \frac{(x_j^T r)^2}{x_j^T x_j} - 2 \frac{(x_j^T r)^2}{x_j^T x_j} = r^T r - \frac{(x_j^T r)^2}{x_j^T x_j}$$

$$k = \arg \min_j J(\hat{w}_j) = \arg \max_j \frac{(x_j^T r)^2}{x_j^T x_j}$$

- If features are unit norm, we pick j with largest inner product (smallest angle) to r

$$k = \arg \min_j J(\hat{w}_j) = \arg \max_j (x_j^T r)^2$$
Orthogonal least squares

- Once chosen k, project onto subspace orthogonal to $1:k$

Algorithm 1: Forward stepwise selection (Orthogonal least squares)

```
1  r ← y, used ← ∅, unused ← 1 to n
2  repeat
3      $k ← \arg \max_{j ∈ \text{unused}} x_j^T r$
4      $r ← r - (x_k^T r)x_k$
5      move $k$ from unused to used
6      foreach $j ∈ \text{unused}$ do
7          $x_j ← x_j - (x_j^T x_k)x_k$
8          $x_j ← x_j / ||x_j||$
9  until stopping criterion is met
```
L1 is convex relaxation of L0

- For linear regression

\[J_0(m) = RSS(w) + \lambda ||w||_0 \]
\[||w||_0 = \sum_{j=1}^{d} I(|w_j| > 0) \]

\[J_1(m) = RSS(w) + \lambda ||w||_1 \]
\[||w||_1 = \sum_{j=1}^{d} |w_j| \]
\[J(\mathbf{w}) = RSS(\mathbf{w}) + \lambda \| \mathbf{w} \|_1 \]

\[J(\mathbf{w}) = RSS(\mathbf{w}) + \lambda \| \mathbf{w} \|_2^2 \]
Whence sparsity?

- Ridge prior: all points on unit circle equal under the prior
 \[\|(1, 0)\|_2 = \|(1/\sqrt{2}, 1/\sqrt{2})\|_2 = 1 \]

- Lasso prior: points on corner of simplices more probable a priori
 \[\|(1, 0)\|_1 = 1 < \|(1/\sqrt{2}, 1/\sqrt{2})\|_1 = \sqrt{2} \]
\begin{equation*}
p(w) = \prod_{j=1}^{d} DE(w_j|0, \tau)
\end{equation*}

\begin{equation*}
DE(w_j|\mu, \tau) = \frac{1}{2\tau} \exp\left(-\frac{|w_j - \mu|}{\tau}\right)
\end{equation*}

\begin{equation*}
\hat{w} = \arg \max_{w} \log p(w|D) = \arg \max_{w} \log p(w) + \log p(D|w)
\end{equation*}

\begin{equation*}
= \arg \max_{w} -\frac{1}{\tau} \sum_{j=1}^{d} |w_j| - \frac{1}{2\sigma^2} ||y - Xw||_2^2
\end{equation*}

\begin{equation*}
\hat{w} = \arg \min_{w} RSS(w) + \lambda ||w||_1
\end{equation*}

\begin{equation*}
\lambda \overset{\text{def}}{=} \frac{2\sigma^2}{\tau}
\end{equation*}
Regularization path

\[\text{dof}(\lambda) = |w(\lambda)|_1 / |w_{ls}|_1 \]

Listing 1:

```
0  0  0  0  0  0  0  0  0  0  0
0.4279 0  0  0  0  0  0  0  0  0  0
0.5015 0.0735 0  0  0  0  0  0  0  0  0
0.5610 0.1878 0  0  0.0930 0  0  0  0  0  0
0.5622 0.1890 0  0.0036 0.0963 0  0  0  0  0  0
0.5797 0.2456 0  0.1435 0.2003 0  0  0  0  0.0901
0.5864 0.2572 -0.0321 0.1639 0.2082 0  0  0  0  0.1066
0.6994 0.2910 -0.1337 0.2062 0.3003 -0.2565 0  0.2452
0.7164 0.2926 -0.1425 0.2120 0.3096 -0.2890 -0.0209 0.2773
```
Lambda max

- Lambda=0 is OLS/MLE
- Max value sets all weights to 0

\[J(w) = \text{RSS}(w) + \lambda \| w \|_1 \]

\[\lambda_{max} = \| 2X^T y \|_\infty = 2 \max_j |y^T x_{:,j}| \]

Homework