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Abstract 

Freehand sketches are complex for recognition. Individual fragments of the 
drawing are often ambiguous to be interpreted without contextual cues. 
Markov Random Field (MRF) that ends up with a global model by simply 
specifying local interactions can naturally suffice the requirement.      

In our project, a recognizer based on MRF has been constructed to jointly 
analyze local features in order to incorporate contextual cues during 
inference process. Shapes in sketches are detected and matched to a 
deformable template. Whereas standard belief propagation (BP) is not 
guaranteed to converge for inference on graphical models with loops, we 
find that loopy belief propagation (LBP) does converge in our experiment. 
The final recognition is found as the MAP marginal by global belief 
propagation. 

1  Introduction  

Recognition of fragments depends heavily on context in a drawing. For example, the two 
different sketches in figure 1 contain similar fragments. The fragments can be recognized as 
the body of wineglass only with the recognitions of a stem and a bottom, or as the body of 
teacup with the recognition of a handle. Thus the recognition should be treated as a joint 
classification task instead of independent classifications. To capture the variability and the 
interactions among different sets of relevant classes, graphical models provide probabilistic 
approaches to take them as random variables forming a set with joint probability distribution 
[1]. From a global point of view, all the variables are mutually dependent. Due to the high 
dimensionality of finding a global solution, graphical models decompose the distribution as 
product of factors and use graph to capture the Markovian properties among the random 
variables. In the graph, each node will only directly depend on its neighbors. For inference, 
Markovian properties also imply the computations to be done remain local. Graphical 
models use message passing algorithms to only update neighbors at each step of computation. 
As powerful tools to capture Markovian properties, Graphic models have been widely 
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applied to image processing and computer vision. The Markovian modeling for classification 
can be generally divided into discriminative and generative approaches.           

 

 
Figure 1: The left wineglass and the right tea cup contain the same fragments (solid 
parts). This fragment can be recognized correctly only with the recognition of the 
other fragments (dashed parts) 

 

Conditional Random Fields (CRFs), which can be taken as a network of interacting 
classifiers, can be generally considered as a discriminative approach. One individual 
classifier can influence the decisions of its neighbors through the network. Kumar and 
Hebert [2] applied CRF to the classification of natural image regions by incorporating spatial 
dependencies in the labels as well as the observed data. Szummer and Qi[3] constructed a 
CRF-based recognizer on hand-drawn diagrams. In [3], pen strokes were firstly subdivided 
into small fragments which were small enough to belong to a single container or connector. 
Then a CRF was constructed on the ink fragments. The site potential refers to the 
compatibility of the label of a single fragment in its ink context and interaction potential 
models whether a pair of fragments prefers the same or different labels. In the third step, this 
CRF is trained and a global compatible solution is given by MAP or MM.  

 

Unlike Szummer and Qi’s example, our task is to classify fragments of a sketch to more than 
two classes which are defined on a template graph. Thus, generative approach is more 
adequate for our problem. Compared with the discriminative approaches, Coughlan and 
Ferreir[4,5] found objects in images using deformable templates which were fit with 
dynamic programming and belief propagation. We have used similar generative modeling 
since we are more interested in recognition of specified objects in sketches. The generative 
model is represented as a deformable template of the chosen object. By preprocessing on the 
sketches, we transform the points of a drawing into a graph. In the training process, the user 
can arbitrary label the nodes in the graph. MRF is trained and applied to a new sketch which 
is also preprocessed and represented as a graph. In inference process, standard BP can not be 
guaranteed to converge to the optimal solution if the graph has loops. We have used LBP[6] 
and found it to converge in our experiment. MAP marginal [4] is estimated for each node 
after global belief propagation. The recognition result is a matching between the nodes of 
trained sketch and test sketch with a probability. 

 

After introduction, we will present how our template is constructed for an example object in 
section 2. The training process is explained in section 3 followed by explanation of LBP 
inference in section 4. Experimental results are given in section 5 with conclusions at the 
last section. 

 



 

2  Deformable  Template  

Our deformable template is constructed to recognize and match a given shape in a sketch. 
The template is defined as MRF with local evidence and edge potentials. We need to find the 
best match between the template and the shape in a sketch.  

 

 
Figure 2.Preprocess of constructing a graph from sketch data. 

 

2 .1  Prep rocess in g   

The goal of our preprocessing is to turn free-hand sketches into a graph. The input sketch for 
our system is represented as an array of time-stamped pixel positions obtained from a sketch 
interface. A stroke is an array of (x,y,t) values that describe the path that the pen traces 
between mouse down and mouse up events. The output graph contains key points that are 
connected by curve segments between pairs of them. The preprocessing has been 
implemented in three phases. 

1. Detection of Feature Points 

A drawing consists of several strokes. We want to find the points that can capture the 
features of the strokes as the candidates of key points. In most case, the feature points 
are vertices at corners of a stroke. Having tried finding feature points from the minima 
of speed, the turn of directions and the maxima of curvature in the presence of noise, we 
pick out feature points from the curvature data. Average-based filtering [7] is used here.  

2. Proximity Linking of Key points 

Having found feature points which also include the start and end points of strokes, we 
need to link strokes to a graph. A threshold of distance is used here to connect nearby 
feature points. If there are still unconnected feature points after the first connection step, 
the nearest normal points within the threshold distance will be flagged as new feature 
points and connected instead.       



 

3. Elimination of Insignificant Key points 

There are always redundant key points by noise in the data and we need to eliminate 
them for matching. How to prune those key points depends on the how many key points 
need to be kept. Our strategy here is just to keep as the same number of key points as 
that defined by user in training examples. Basically we prune the key point that is near 
the straight line passing its two neighbors, or which is too near its two neighbors. 

After the three preprocessing steps, the original sketches can be turned into key points with 
curve segments between pairs of them. We take the key points as nodes and add an edge to 
two nodes if they are directly connected by segments (figure 3). The structure of the graph 
only depends on the objects, so it can be any random graph and can contain loops.  

 

 
Figure 3. A reference shape of template with labels of key points 

 

 

2 .2  Fea tu res   

In the template graph, each node has an associated label variable. Our approach is to 
compute some low-level features and represent them in potentials in the random fields. Our 
features are based mainly on the connectivity, i.e. we want to recognize the objects which 
have same topology as the given example.   

For each key point, the site features come from the incident curve segments which are 
incident with another given key point. We can compute the shape context [8] which is 
basically the histogram of distance and angles to the points of neighboring segments. In this 
project, only the number of the incident curve segments is considered as site feature. 

The interaction features come from the segments between pairs of key points. Curve 
matching is a common method for recognizing given shape in computer vision. In this 
project, only connectivity is considered. If two key points are directly connected, the number 
of edges between them needs to be computed first. We also consider the length of the curve 
segments to estimate the distance between two key points. If there are multiple connections, 
the lengths of different segments will be compared to decide whether they have similar 
length. The ratio of lengths of multiple connections gives us further connective relationship 
between two key points. 

 



 

Key Points 1 2 3 4 5 6 

Number of Linked Segments  3 3 3 3 2 2 

 

Key 
Points 

1 2 3 4 5 6 Key 
Points 

1 2 3 4 5 6 

1  0.80 

0.86 

  0.71  1  3   2  

2 0.80 

0.86 

 0.18    2 3  1    

3  0.18  0.39 

0.78 

  3  1  4   

4   0.39 

0.78 

  0.34 4   4   1 

5 0.71     0.67 5 2     2 

6    0.34 0.67  6    1 2  
Table 1. Site and interaction features from the example in Figure 3 

Top- Number of edges converged at nodes; Bottom Left - Length of edges; Bottom Right - 
Classification of edges (One connection: 1. short; 2. long (mean length = 0.48). Two connections: 3. 
similar length; 4. one short, one long (ratio = 1.5)) 

 

2 .3  S ite  a nd  In t era ct io n  P oten t ia l s   

Given a reference shape, we need to match a new sketch to it with the similar site and 
interaction features as in Table 1. NSite is the number of segments linked at one key point 
which take the value {1, 2, 3,.., Nmax} where Nmax is the maximum number of segments 
intersected at one key point. NInter is the connection between two key points that can be 
classified to {1, 2, 3, 4} in this example.   

We can express the posterior as a Markov random field with pair wise interactions: 
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3  Training  

In the training, the user needs to label the key points in an arbitrary sequence of a reference 
sketch (interface in figure 4). Then we need to compute the site and interaction potentials of 
the features, i.e. for each site feature and edge feature we need to compute their probabilities 
of being specified labels. We can measure the empirical counts as the maximum entropy to 



 

get a standard table potential. Using the same example from section 2, we can compute some 
site and interaction potentials as below. 

For site feature NSite = 3, the site potential is [0.25 0.25 0.25 0.25 0 0] 

For interaction feature Ninter = 1, the interaction potential is a 6x6 matrix P. 
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Figure 4. Interface for training 

 

4  Infere nce  

For inference on the graph with loops, LBP is applied to find MAP (maximum a posterior) 
marginal.  

4 .1  M AP Ma rg ina l 

One way to match the shape to the template is to calculate the MAP. 

)|(maxarg* DQPQ Q=                        (3) 

In our application, we use the MAP marginal [4], which is the MAP applied separately to 
each variable iq :  
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We estimate the MAP marginal using brute force and LBP[6] methods. The recognition 
results have proved MAP marginal to be correct in our case.  



 

4 .2  B ru te -forc e A p p roa ch es  

When we were pursuing an adequate recognizer for tea cups, the first thing came into our 
minds was to use a brute-force method in order to see what features and parameters were 
suitable for our problem. Through the process of brute-force approaches, we obtained some 
general ideas about how we could interpret features in a meaningful way. 

Towards the tea cup problem, we implemented a program to match key points of a freehand 
sketch to those that we had pre-defined on the deformable template. In this program, we used 
the number of incident edges of each key point as site feature, and the number of edges 
between a pair of key points and the ratio of those edges as interaction feature. However, 
this didn’t give us accurate solution empirically, because these features lacked of 
information of the whole graph. We’ll see later how BP message passing could solve this 
problem, but for now we need to incorporate more features. Then we made the probabilities 
of key points based on current features into account, and thus the probabilities of neighbours 
of each key point are affected. With all these features, this program works well for tea cup 
examples. Nevertheless we need a more general approach for general graph.  

Our second naïve approaches was to develop a training program which took a graph as a 
template that was represented by the numbers of incident edges of key points, the adjacency 
matrix, and the lengths of edges. This program learned the features described above from the 
graph and outputted suitable potentials. A similar program then got the output and inferred 
on a new graph using these potentials. To infer on a new graph, the program learned the 
features from that graph, and assigned corresponding probabilities to each key point based 
on these features and the potentials from previous program. Then, an estimated labeling was 
obtained by taking the maximum marginal of each key point.  

Empirically the second works well for simple asymmetric graph, e.g. tea cup examples. 
However, for more difficult recognition problems, e.g. mouse examples, this program fails at 
points that have similar local features. Hence, we looked for some inference methods that 
can apply global contextual information. CRF and MRF both can effectively use all 
contextual cues to give correct marginals. Moreover, BP applied on MRF is a powerful and 
suitable tool for our problem. 

4 .3  Loo py  B el ie f Prop ag at ion  

Pearl’s belief propagation algorithm [9] is a profoundly powerful and efficient algorithm for 
finding or estimating posterior probabilities. Yair Weiss et al. [10] explained the correctness 
of belief propagation in Gaussian graphical models of arbitrary topologies. Furthermore, 
Murphy [6] showed that with large priors randomly in the range [0, 1] and large weights 
loopy belief propagation converges and gives an excellent correlation with the correct 
marginals. Therefore, loopy beliefs can provide desirable estimation for our problem. 

In each iteration of Pearl’s belief propagation algorithm, we calculate a belief for each node 
X, BEL(X) = P(X = x|E) where E is the observed evidence and P(X = x|E) depends on the 
messages from X’s parents and children, denoted by )( kX uπ  and )( x

jYλ  respectively. 
More precisely [6], 
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The message that X passes to its parent Ui is given by: 
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and the message X sends to its child Yj is given by: 
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5  Expe riment Re sults  

We have tested our recognizer on three classes of objects: cup, wineglass and mouse. All the 
sketches including train and test sketches are drawn with no constraints on stroke sequence 
or number of strokes for one sketch. Then all the sketches have been preprocessed to graphs 
with key points as the nodes. For each class of object, we randomly picked one sketch as the 
training data and labeled the key points. Then all the other sketches were matched to the 
labeled key points. The matching results in figure 5 show that even with only one training 
sketch, our recognizer can still find the correct matches invariant to global rotation and 
translation. This recognizer can also be used to recognize a similar object from multiple 
objects such as in figure 6 where we match a cup to both cup and wineglass.   

   

 
Figure 5. Matching results for same class of objects 



 

 
Figure 6. Matching results for different objects 

 

 

 Number of Iterations Number of Iterations(1% noise) 

Cup 3 5 

Mouse 7 11 

Table 2. Iterations of LBP to converge for cup and mouse examples without and with noise 

 

LBP has been proved to converge for graph with loop in our case. In table 2, we can see that 
it will take more iteration steps to converge for the mouse example than cup because the 
mouse has more nodes and states. If some noise is added to the template model, LBP can 
still guarantee to converge with more iteration steps. 

 

6  Conc lus ions   

In this paper, we have presented a procedure of generative modeling and inference on sketch 
recognition. The recognition is achieved by correctly matching key points of a sketch to a 
given template with some energy cost. By preprocessing, a sketch is first transformed into a 
MRF that captures the individual match and interaction between neighboring matches by site 
and interaction potentials. Then LBP is used for efficient inference on the graph with loops. 
The experiment results have shown that LBP can converge and the MAP marginal give us a 
correct matching of all key points. 

Our initial motivation of applying random fields to sketch recognition came from the work 
by Szummer of applying CRF to recognizing hand-drawn diagrams [3]. Although CRF can 
capture interactions between labels and take arbitrary features on all the observed data, it 
requires a crucial training procedure to obtain favorable parameters and much computation 
for normalizing constant and marginals of densely connected graphs. On the other hand, we 
are more interested in recognizing specified object and we can also easily construct a 
template of the object. Hence, we choose generative modeling instead of discriminative 
modeling. At the same time, LBP provides an efficient approach for inference. MAP 
marginal from global belief prorogation can give us a correct matching for each node. 

Graphical model has been proved to be a strong tool for image processing and computer 
vision. However, its application has been constrained largely on true imagery instead of 
sketches. From this project, some worthwhile future work may be done in two aspects. One 
is from computer vision to construct more meaningful features. The other is to incorporate 
one-to-one correspondence and junk pruning procedure into modeling and inference of 
graphical models. The latter work can also be done by dynamic programming and machine 
learning techniques.  
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