Expectation Propagation of Gaussian Process
Classification and Its Application to Gene
Expression Analysis

Mingyue Tan
Department of Computer Science
University of British Columbia
mtan@cs.ubc.ca

Abstract

Expectation Propagation (EP) is an approximate Bayesian infer-
ence technique which has been applied to Gaussian Process Clas-
sification (GPC) [4]. In this paper, we investigate four different
likelihood functions of GPC, and present EP algorithms for each of
these four models. We compare the performances of these models
on synthetic data in circular shape. Comparative study is per-
formed on EP-GPC with SVM and Laplace-GPC. Experimental
results show EP-GPC outperforms the other two kernel methods
on high dimensional gene expression data. A feature selection tech-
nique, Automatic Relevance Determination (ARD), is applied to
find the relevance of genes. Experiments show the effectiveness of
ARD for all classification models.

1 Introduction

Classification with kernel machines have recently received much attention from the
machine learning community. Some popular kernel classification algorithms include
Support Vector Machine (SVM) [8], Bayes Point Machine (BPM), and GPC [5].
In this paper, we focus on GPC which is a Bayesian kernel classifier derived from
Gaussian process priors over functions. Further more, we focus on he binary classi-
fication,i.e. discrimination between classes labeled as -1/+1.

GPCs can be represented as graphical models which have random variables for
inputs, latent variables for function values, and class labels. Class labels are com-
pletely determined by the latent function values. Several noise model can be used
to model the likelihood of class label given the latent value, such as probit function.
Automatic Relevance Determination (ARD) parameters can be directly embedded
into the covariance function, which can be considered a kernel that simplifies the
problem in high dimensional space [5].

Since only class labels are observed, we need to integrate over both hyperparameters
and latent values of these functions at the data points. Many approximation tech-
niques have been used to approximate the integrals. For example, Williams used a

Figure 1: Graphical model for GPCs with n training data points and one test data
point. [3]

Laplace approximation to integrate over the latent values and Hybrid Monte Carlo
(HMC) to integrate over the hyperparamters [9]. Neal used HMC to integrate over
both latent values and hyperparameters [5]. However, Monte Carlo methods are
sometimes expensive to use in practice. A successful approach using Expectation
Propagation (EP) is introduced by Thomas Minka in [4].

The contributions of this paper include: (1)Investigation of four different likelihood
functions, namely step function, probit function, probit function with bias, probit
function with Gaussian noise, for GPC and derive EP update rules for probit func-
tion with and without Gaussian noise. (2)Implementation of EP-GPC using probit
function and probit function with bias. (3)Comparative study on various likelihood
functions in the literature of EP for GPC (4) Comparative study of EP with other
approximate inference techniques, such as Laplace approximation, as applied to
GPC.

The rest of the paper is organized as follows. Section 2 introduces Gaussian process
classification. In Section 3, we discuss EP with variational methods for hyperparam-
eter inference. Section 4 presents EM-EP algorithm with four likelihood functions.
The experimental results on both synthetic data and real gene expression data are
reported in Section 5. We conclude in Section 6.

2 Gaussian Process Classifiers

Consider a data set D of data points z; with binary class labels y; € {—1,1},
D ={(z,y)li =1,2,...,n}, X ={zi|i = 1,2,..n}, Y ={y;|li = 1,2,...,n}. Given
this training data set, we wish to predict the class label for a new data point x, by
computing the class probability p(y«|z., D).

The main idea of Gaussian process classifier is to assume that the class label y; is
obtained by transforming some real valued latent variable f(z;) associated with ;.
The graphical model for GPC is shown in Figure 1. This graphical model encodes
the assumption that z and y are independent given f. A bayesian framework is
described with more details in the following.

2.1 Gaussian process prior

We place a Gaussian process prior on the function f(-), meaning that for any finite
set X = {z1,..., Z;m}, the random vector f = [f(x1),..., f(z1)]T is a Gaussian.
Without loss of generality, we can assume such a process has a zero mean. The
covariance between f(z;) and f(x;) can be defined as

h
1 .
Bij = e(wi,z;) = voexp{—5 D bm(a}" —25")°} + v1 +v20(i, 5), (1)

m=1

The hyperparameter vy specifies the overall vertical scale of variation of the latent
values, v is the overall bias of the latent values from zero mean, vo is the latent
noise variance, and l,,, is the ARD variable for the m-th feature that controls the
contribution of this feature in the modelling.

The prior probability of these latent function values {f(x;)} is a multivariate
Gaussian

—71 ex —1 Tyt
Pf) = ool) (2)

N3

2.2 Likelihood for class label

The likelihood p(D|f) is the joint probability of observing the sample labels given
the latent function values. The likelihood can be evaluated as a product of the
likelihood function

p(DIf) = {] [p(vil £)} (3)

The rest of this section presents four likelihood functions for class labels
1. Step function([4], [3]):
p(yilfi) = e+ (1 — 2¢)H (yif:) (4)

where H(z) = 1 if x > 0, and otherwise 0. The parameter ¢ models labeling error
outliers.

2. Probit function([4], [1], [5]):
p(yilfi) = (yifi) (5)

where ® is the cumulative distribution function (c.d.f.) of standard Gaussian
distribution N (0, 1).

3. Probit function with bias([6]):
p(ilfi) = ®(yi(fi + b)) (6)

where ® is same as above, and b is the bias parameter. The reason for this choice
is that the integral [®(y;(f; +b))N(f;)df; can be done analytically for a Gaussian
N(f;). See [6] for a detailed explanation of this noise function.

4. Probit function with Gaussian noise([1]):
In the presence of noise from inputs or targets, we may assume that the latent func-
tion values are contaminated by a Gaussian noise which is independent of inputs.

If we use 6 to denote the noise, then § has zero mean and an unknown variance o2,

i.e. N(6;0,02%). The likelihood function becomes

Bl @

p(yilfi) = @(

2.3 Posterior probability

The posterior probability can be written as

p(fID) = H (vilfi)p (8)

where the prior probability p(f) is defined as in (2), and p(D) = [p(D|f)p(f)df

The kernel parameters in the covariance function (1), and labeling error € in step
function, bias term b in probit bias function, or the noise variance ¢ in probit noise
function are all collected into #, which we will call hyperparameters. The normaliza-
tion factor p(D) in (8), which should be conditional on the hyperparameters p(D|6),
also known as evidence for 6 is a yardstick for model selection. Section (3) discusses
how EP can be used for hyperparameter learning.

2.4 Prediction

Suppose we have found the optimal settings of hyperparameters 6*, then let us
take a test sample z,, for which the class label y, is unknown. By the definition of
Gaussian process, the latent variable f(z.) and the f = [f(z1), ..., f(z»)]T have a
joint multivariate Gaussian distribution, i.e.

L (O e kb) |

where k = [K(z.,21), K(2s,72), ..., K(24,7,)]T. The conditional distribution of
f(x) given f is also a Gaussian:

9)

_ pT\—17,\2
(f*lfDe*)cxexp< 1) —f7 % k)k>

2 (24,) — kT2

The predictive distribution of P(f(z.)|D,0*) can be computed as

p(f.1D,0%) = / p(f.\f. D.07)p(f|D.6%)df (10)

The second term of the integrand, the posterior distribution p(f|D,0*) can be
approximated as a Gaussian by the EP approach discussed in section (3). The
predictive distribution (10) then can be simplified as a Gaussian N (f(24); fte, , 02, %)
with mean ., and variance o, 2. In the EP approach, we reach

po, =T (E+T Y 'm and 0,2 = K(z,z) — kT (S+TTH e (11)

The predictive distribution over the class label y, is

P(y«[x., D, 0%) = /p(y*lf(m*),9*)p(f($*)|D70*)df(x*) (12)

1 — normedf(0, py, ,05,) step function

(ke) probit function
V1+to,,2
- @(M) probit function with bias

V1tog,?
(Yl o)

\o2+toy,?

probit function with Gaussian noise
(13)
where normedf (z, p, o) is the cumulative density of a normal distribution with mean
w1 and variance o from —oo to x.
The class label y,, can be decided as
argm;axp(y* = i|z., D, 0")

As for the step function, the class label has a special form of

"y (1— 20N (20, 1)
— Ai e+ (1 —2e¢)erf(2)

K(zi,2.))

argm?xp(y* =iz, D,0%) = sgn(
where z; and \; for step function are defined in the same way as in [3],

3 EP for Gaussian Process Classifiers

Expectation Propagation (EP) algorithm is an approximation Bayesian inference
technique that tries to minimize the KL-divergence between the true posterior and
the approximation [4]. We review EP in its general form before describing its
application to GPCs.

The EP algorithm has been applied in GPCs along with variational methods for
model selection ([6], [3], [1]). In the settings of Gaussian processes, EP at-

tempts to approximate p(f |D) as a product distribution in the form of ¢(f) =
H?zl ti(f(ﬂ?i))p(f) where ti([(ﬂ?i)) = SieXP(—%pz‘(f(xi) - mz‘)z)-

The parameters s;, m;, p; in t; are successively optimized by minimizing the follow-
ing Kullback-Leibler divergence,

e () = argmin KR iy) 2005 (1)

Since ¢ is in the exponential family, this minimization is solved by matching
moments of the approximated distribution. EP iterates over i until convergence.
A detailed updating scheme for EP-GPC with probit functions (with and without
Gaussian noise) can be found in Appendix A. The algorithm is not guaranteed
to converge although it did in practice. At equilibrium of ¢(f), we obtain an
approximate posterior distribution as

p(fID) = N(f; (27" + 1) 'm, (27" + 1)) (15)
where II is the diagonal matrix whose ii-th entry is p; and m = [my, ..., m,]7T.

Variational methods can be used to optimize the hyperparameter 8 by maximize
the lower bound of the logarithm of the evidence, which has the following form

o p(D|f)p(f) o p(D|f)p(f)
log p(D|6) = log / TR gy = / ol o2y
- / a(Flogp(D|F)df + / a(Flogp(F)df — / o(Foga(F)df = F(0)

(16)

Given the expression of the lower bound F(8) in terms of ¢(f), the gradients of
F(0) with respect to 8 can be derived by neglecting the possible dependency of
q(f) on F(0). The detailed formulation can be found in Appendix B.

4 The EM-EP Algorithm

Kim and Ghahramani [3] proposed a conceptually simple EM-like algorithm to
learn the hyperparameters which we refer as EM-EP algorithm. The algorithm
works as follows.

1. E-step EP iterations are performed given the hyperparameters. p(f|D) is ap-
proximated as a Gaussian density ¢(f) given by Equation (15)
See Appendix A for the EP algorithm for the four models

2. M-step Given ¢(f) obtained from the E-step, find the hyperparameters which
maximize the variational lower bound of logp(D|0).

The E-step and the M-step are alternated until convergence. See Appendix B
for a derivation of the M-step. The gradient update rules with respect to the
hyperparameters can be found in Appendix B.

5 Experimental Results

One of the goals of this paper is to compare various likelihood functions of GPC
using EP. We start this section with two simple synthetic datasets in circular shape
to visualize the behavior of these algorithms. Another goal of this paper is to
compare EP with other inference techniques, such as Laplace approximation, for
GPC. To do this, we test EP-GPC and Laplace-GPC on gene expression data, and
the performances of these two algorithms are compared with SVM.

5.1 Implementation

Based on Kim’s matlab code of EM-EP algorithm with step likelihood function, we
implemented EM-EP algorithm with two other likelihood functions, namely probit
function and probit function with bias. Chu [1] publishes his C code of GPC for
ordinal regression. By some simple algebra, we can see that in the case of binary
classification, the generalized likelihood function in Chu’s ordinal regression model
becomes the probit function with Gaussian noise, so we use his code to test this
likelihood function.

In the first experiment with two dimensional synthetic datasets, we use Kim’s mat-
lab code, our matlab code, and Chu’s C code to test various likelihood functions.
Because of the lower speed of matlab implementation, we only use Chu’s C code to
test EP for GPC on high dimensional gene expression data.

5.2 Synthetic Data

We use the same data as in [3]. The two-dimensional data set with input features
(i.e. dimensions) x; and xp are random numbers between -1 and 1. The decision
rule for class -1 and +1 is x% + x% > 0.5. A total of 1000 data points are generated
with 40 of them as the training set and the remaining 960 samples as the test set.
Two such type of datasets are used. The two data sets are same excepted that we
added labeling errors to two randomly selected data points in the training set. Test
results are shown in Figure 2-8.

For the step function, we compare the case where labeling error hyperparameter e
is fixed (e = 0) to the one with adapted labeling error hyperparameter on the two
datasets. For the dataset without outliers, the model with fixed € achieves the same
test error rate as the one with adapted e. Classification results are shown in Figure
2. However, the model with fixed € converges faster as shown in Figure 3. This
makes sense because it takes time for parameters, in this case €, with improper initial
setting to be adapted. In the presence of outliers, The algorithm with adapted e
outperforms the one with fixed €, because fixed e can cause overfitting as shown in
Figure 4. The convergence properties of the algorithms are shown in Figure 5.

Three versions of probit functions can not handle the dataset in circular shape well.
The algorithm with either version of probit function achieves a test error rate of
12% or so. Classification results with one type of probit function is shown in Figure
6. The algorithms using probit functions fail if the data contain outliers. As shown
in Figure 7, the classificaiton performances of the classifiers with probit functions
are no better than random guess in presence of outliers. This may suggest that
probit function models a general dependency (with tractable noise) of class labels
on latent function values, not extreme case, like outlyingness or mislabelling.

5.3 Gene Expression Data

We applied the algorithm using probit function with Gaussian noise to high-
dimensional gene expression dataset: colon cancer.

For the colon dataset, the task is to discriminate tumor from normal tissues. The
dataset has 22 normal and 40 cancer samples with 2000 features per sample. We
randomly split the dataset into 42 training and 20 test samples 10 times and run
SVM, EP-GPC, and Laplace-GPC on each partition. Test results of the three
algorithms using linear kernels are presented in Table 1 and Table 2. Note that
even though Laplace approach reaches a smaller variance in the case where all 2000
features are used, the test error rates on this dataset are both large. It makes sense
to use predictive variance as a criteria to evaluate classification performance only if
the classification accuracy is reasonably well.

By using some feature selection techniques, such that ARD, we can eliminated
irrelevant features. In this case, we use the dataset containing 373 relevant features
selected according to optimal ARD parameter values. All of the three algorithms
achieve higher accuracies on this smaller dataset, and the two GPCs outperform
SVM. EP-GPC and Laplace-GPC have comparative classification accuracies, but
EP-GPC approach is better than Laplace-GPC in the sense that the variance of the
predictive distribution using EP is smaller.

6 Conclusion and Future Work

Based on the work of [4, 6, 1] on noise models, and EM-EP algorithm proposed in
[3], we investigate four likelihood functions and derive some special form of updating
rules for EM-EP algorithms in the case of binary classification. Experiments showed
step function with labeling error hyperparameter handles outliers well. GPC with
EM-EP showed better performances than both SVM and GPC with Laplace-MAP
on gene expression data. By incorporating some Bayesian feature selection tech-
niques, such as ARD, we can improve the performance of GPCs on high dimensional
data.

GPCs have some advantages over other kernel methods because they are fully sta-
tistical models. This suggests that we can improve the performance of GPCs from
many different directions. For example, we can incorporate prior information to in-
form learning of the hyperparameters. We can improve approximate inference and
optimization techniques to gain in both accuracy and speed. Also, a good follow-up
of this project is to build a better likelihood function. Experiments show step func-
tion handles outliers well, and we believe probit functions may handle general noisy
data better. As future work, we can do experiments to verify our hypothesis. In
real world, Microarray gene expression data are usually both mislabeled and noisy.
A robust likelihood function which captures both properties is desired.

Acknowledgements

Thanks to Dr. Kevin Murphy for directing papers on the topics of EP for GPC.
Thanks to H. Kim for providing his matlab code of EMEP for GPC with step
likelihood function. Thanks to W. Chu for providing the C code of GPC for ordinal
regression and gene expression data.

Appendix A. Approximate posterior distribution by EP !

The EP algorithm using step likelihood function and probit function with bias are
presented in [3] and [6] respectively. We skip these algorithms because of the
limited space. The updating scheme of EP algorithm for the other two likelihood
functions, namely probit function and probit function with Gaussian noise, are
presented below.

1. Initialization (same for all likelihood functions)

e individual mean m; = 0 Vi,

e individual inverse variance p; = 0 Vi;

individual amplitude s; =1 Vi
e posterior covariance A; = (X~ + II)~!, where Il = diag(p1, p2, -, Pn);

e posterior mean h = Allm, where m = [my, ma, ..., m,|".

2. Looping from i = 1,...,n until all (m;, p;, s;) converge:

(1) Remove ; from the posterior ¢(f) to get a leave-one-out posterior distribution
¢“'(f) having

'A major portion of the fomulae in this Appendix is based [1]’s work on ordinal
regression, and we present the special form for binary classification

: Lo\ Ay
- variance of f;: A, =14

- mean of f;: h\z—h + Niv; (R —mz)
- others with j #d: A \—Ajandh =h;

(2) Compute new posterior approximation by incorporating the message p(y;|f;)
into ¢\'(f):

If Probit Function with Gaussian noise 2 is used, then

- Zi= [Pl f@))N(F(@); b N df () = B(Z)

\i
ih
where z; = -2
\/)\y—i—a?
v = OlogZ; _ 1 (N(fﬁoxl))
7 8h7\z \/)\\14’ 2 @(27;)
B; = dlogz; _ 1 (yifif\f(fi;oxl))
1 a)\>i 2(A>i+o_z) (%)
-vi=a; —20;
\i \i
-h =h"+ N o
new _
pz /\\L’UI

_ mnew — h\i (73
Vi

- STV = Z;n/ /\yp?e“’ + lexp(

(3) If pI* > 0, update {p;, m;, s;}, the posterior mean h and covariance A.

of
21}1')

new _

° Anew A paz - Where p = m
A. (if pi***'=p;, skip this sample and this updating.)

and a; is the i-th column of

Qg +p1 (h ml)

o AW = h + na; where n= Sy

The approximate evidence can be obtained in the same way as for BPMs:
P(D | 0) at the EP solution, which can be written as

a det2 (T B
H G—H)exp(g)
7 det2(X+T17H)
where B = Z Aij(mipi)(mjpy) — 32, pim;
Appendix B. Gradient Formulae for Variational Bound

At the equilibrium of ¢(f), the variational bound F can be analytically calculated
as follows:

2If probit function is used for likelihood, simply replace every occurrence of o2 by 1 in
the expressions of Z;, Z;, o, and f;.

=§2/NumeAmm@wu@mumm—%mu+2m

1 1
—gtrace(+ S~ = om (B4 0T ISE+IT) T m4 S (17)

Again, we skip the gradient formulae for step function. Refer to [3] if interested.
Let x denote the vector containing the hyperparameters in covariance function, b
denote the bias in the probit function with bias, and 6 denote the noise variance in
probit function with Gaussian noise. Then the gradient of F(6) with respect to the
variables In k,Inb,Ino can be given in the following:

Olno

/Q 8log77(f)df

8ln/@
__k by Tg—10% y-1 kK 10X
= 2trace(2 o)—I— ZpTy- o h+ 2trace(2 5‘&2 A)
_ Kk -1 182 K -1 108 -1
= 2trace((H +3)” fm) +om m? (I +) B (I +%)

(18)

oo

OF(0) N 4 O Py | f(x)) .
1 _a;/N(f(xz),hz,Am) df (z:)

N2

n hio2 0'2./4" % exp(— 2(0(2}7'_;_)"4“))
=Y [N i . af (1)

@) A T AL Py | @)

}j/N (wigsher) Yo) £ i) (20

i1

The last two integrals can be approximated using Gaussian quadrature.

References

(1]

2]

Chu, W. & Z. Ghahramani. Gaussian processes for ordinal regres-
sion. Technical report, Gatsby Unit, University College London, 2004.
www.gatsby.ucl.ac.uk/ chuwei/paper/gpor.pdf

Qi, Y., T.P.Minka, R.W.Picard, & Z. Ghahramani. Predictive automatic relevance
determination by expectation propagation. In Proceedings of the Twenty-first Inter-
national Conference on Machine Learning, pages 671-678, 2004.

Kim, H. & Z. Ghahramani. The EM-EP algorithm for Gaussian process classification.
In Proceedings of the Workshop on Probabilistic Graphical Models for Classification
(at ECML), 2003

Minka, T.P. A family of algorithm for approximate Bayesian inference. Ph.D. thesis,
Massachusetts Institute of Technology, Janurary 2001.

Neal, R. M. Monte Carlo implementation of Gaussian process models for Bayesian
regression and classification. Technical Report No. 9702, Department of Statistics,
University of Toronto, 1997.

Seeger, M. Notes on Minka’s expectation propagation for Gaussian process classifica-
tion. Technical report, University of Edinburgh, 2002.

Rasmussen, C.R. Gaussian Process in Machine Learning. Advanced Lectures on Ma-
chine Learning: ML Summer Schools 2003, Canberra, Australia, February 2 - 14,
2003, Tibingen, Germany, August 4 - 16, 2003.

Rasmussen, V. The Nature of Statistical Learning Theory. Springer, New York(1995).

Williams, C.K.I and D. Barber. Bayesian classification with Gaussian processes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(12):1342-1351, 1998.

(2] Training set, true label

1 F ¥ ¥
osf * *]
_H.
+
or 4
a5+ M
+ i + 7+
K +

-1 05 1] 05 1
() training set errar: 0.000000

1 +F ¥ ¥
osf * K]
_H.
+
O 4
o8t o+ ++H
+ th + 4
’ + .

1 05 0 05 1

Figure 2: Classification Results on Data without Outliers Using Step Function

(a) Training set, (b) Test set, (c) Classification result on training data using the optimal

hyperparameter settings trained with the training set, (d) Classification result on test set

-85 T T T T T T T T T -16.05

-16.1

-16.15

-16.2

-16.25

logRi(D)

-16.3

logP(D)

-16.35

-16.4

-16.45

-165

-16.2

-16.55

0 05 1 15 2 25 3 35 4 5 & v 2 4 &5 8 W 1= u B @ m
iteration iteration
(a) fixed € (= 0) (b) adapted € (e= 0.01 initially)

Figure 3: Logarithm of Evidence at Each Iteration on Data without outliers using Step Function

The evidence converges faster with fixed labeling error (e= 0) than the case where & was
adapted.

(a) Training set, true label (b) Test set, true label

—_

. = o o o s
’ > S e]
+ ISR A S .
05 o | 0_5”44;_# s R o A ;ﬁﬁﬁ i
0 o o-j'*'#ﬁ: X % O +-JF§;H
+ 0 T
* Eﬁ% o K N +§’+fﬂ$¥
-05 + + + -0.5§+€% f-%% L ﬁﬁﬁ
Tt T et i S fﬁﬁ% i
- S : A f# g %;ﬁﬁﬁ{ +ﬁt+##§t#ﬁ“ ﬁ%i
-1 -0.5 0 05 1 -1 -0.5 0 0.5 1
(c) test set error: 0.081250 (d) test set error: 0.037500

1 _#__PH’I I T + I L et 1 | — I | — + | I ;.Fa_ +
BTl e 15 A e I . P i
gg ;i D g@ & ply et
0.5F ‘ : 0.5;% oA ‘j }

A

0.5 * A
] % P R T o 2% e
H Hatt | ﬂaﬁ& T A, o
T S T SN - e
-1 05 0 0.5 1 1 05 0 05 1

Figure 4: Classification Results on Data with Outliers Using Step Function

(a) Training set with two outliers, i.e. data points that are mislabeled, which are circled red, (b)
Test set, (c) Classification result with fixed labeling error hyperparameter (e= 0), (d)
Classification result with adapted labeling error hyperparameter €

lagP(D)
logP(D)

L L L L L L L L L 29 L . L L . L L . .
2 4 B 8 10 12 14 16 18 20 a 2 4 4 g 10 12 14 18 18 20
iteration iteration

(a) fixed € (= 0) (b) adapted € (e= 0.01 initially)

Figure 5: Logarithm of Evidence at Each Iteration on Data with Outliers using Step Function

(&) Trainging set, true label (b} Test set, true label

1 FF ¥ ¥
nsf T *]
_H.

+

0+

asft + + H

+ + 4

+

-1 : - :
-1 05 0 0.5 1
ic] Training set errar: 0.125000

1 FF +
0s -
_H.
+
o
+
asft + ++
+ + 4
1 +

Figure 6: Classification Results on Data without outliers Using Probit functions

[a) Test set, true label (bl Test set error: 0. 419792

Figure 7: Classification Results on Data with outliers Using Probit functions

Algorithms

Test Error Rate (%)

Predictive Variance

SVM

0.226

Laplace-MAP

0.219

3.49

EP

0.19

6.72

Table 1. Test error rates with all 2000 genes

Algorithms Test Error Rate (%) Predictive Variance
SVM 0.216 -
Laplace-MAP 0.133 3.16

EP 0.133 4.15

Table 2. Test error rates with 373 relevant genes

