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Abstract. Object-oriented paradigms have been applied to Bayesian networks 
to provide a modular structure which allows greater flexibility and robustness. 
These object-oriented Bayesian networks may be used over larger and more 
complex domains. However, as the networks get larger, the computational cost 
of triangulation and junction tree construction grows. The process of creating 
new junction trees when changes are made to object-oriented Bayesian 
networks is particular inefficient. Bangso et al [1] describe a method for using 
the networks maximal prime subgraph decomposition to only reconstruct the 
parts of the junction trees effected by these changes. This project is an 
implementation of that algorithm.  

1 Introduction 

Object-oriented paradigms have long been applied in the context of programming 
languages to make code more coherent and aid its reuse. Object-oriented 
programming languages [3] provide a modular structure that increases the robustness 
and flexibility of programs. Thus, they are particularly well-suited to the design of  
large-scale programs. Changes made in one class naturally propagate to all objects of 
that class. Similarly, this approach may be applied to Bayesian networks to make 
them more efficient and flexible, allowing their use over more complex domains. 
Object-oriented networks have also proven to be particularly well-suited to highly 
dynamic domains  [3]. 

As these object-oriented Bayesian networks grow in size, the process of 
constructing junction trees becomes more computationally expensive. This process 
must be repeated whenever changes are made to the network. In a large network, 
much of this work is redundant, especially when the changes made are small. In this 
case, time is often wasted triangulating the unchanged part of the network.  

An alternative approach, described by Bangso et al [1], involves using the maximal 
prime subgraph decomposition to quickly identify and isolate the modified part of the 
larger network. A junction tree may then be created for the smaller, changed fragment 
to replace the appropriate piece in the existing junction tree. This eliminates the 
unnecessary step of reprocessing the unchanged part of the network, building the 
section of the new junction tree that is identical to the old part. This project is an 
implementation of the more efficient algorithm.   
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2 Object-Oriented Bayesian Networks 

In an object-oriented Bayesian Network (OOBN), the basic unit is an object [1]. It 
may be viewed as a set of set of properties that are associated with some entity in our 
domain. An object has identity, state and behavior. It also belongs to a class, which is 
a description of a set of objects with the same structure behavior and characteristics.   

Specifically, an object X consists of three sets of nodes [4] : 
 
• I(X) : These are input nodes that correspond to nodes which are not in the class 

but which may be used as parents of nodes inside instances of the class. These 
nodes  may not have parents inside of the class. 

• E(X): These are encapsulated nodes that can only have parents and children 
inside of the class.  

• O(X): These are the output nodes that can have children outside of the class. 
 
An object may also be denoted by its full variable V+(X) = <E1, .., Em, O1, …, On> or 
by its output variable V(X) = <O1,…,On>, where the E1,..,Em are the object’s 
encapsulated nodes and the  O1,…On are the object’s output nodes. An object’s 
interface [1] consists of its input nodes and output nodes. Objects in an OOBN are d-
separated from each other by their interface nodes [4]. 

 

 
 
Figure 1 shows an example of an object-oriented Bayesian network depicting 

attributes of a person. On the left, an overview of the network as a whole is shown. 
The objects appearing in this network are House, Car, Interior and Dog. Object 
Interior is defined inside of object Car in this example. On the right, a close-up image 
of the object House appears. In object House, the input nodes are children and income 
and the output nodes are sqr ft, # stories and yard size. The encapsulated nodes are # 
bedrooms, # bathrooms, # closets, pool  and fence. 

 

age
job 

             House               
sqr ft      # stories      yard  
                                   size 

children
income

Dog 
breed

         Car           
      Interior         
engine           size

children

# bedrooms

# bath-
rooms

income

pool 

fence 

sqr ft

# closets

# stories yard size 

Figure 1. An OOBN depicting attributes of a person appears on the left. On the
right a close-up image of the object House is shown. 
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As mentioned earlier, while input nodes are part of the specification of an object, 
they do not actually appear in the class to which the object belongs. Instead, they 
correspond to nodes outside of the class.  In an OOBN, the use of links from nodes 
outside of an object to input nodes inside is analogous to “passing parameters” by 
value to the object. These links are known as reference links [1] and they appear as 
dotted lines in figure 1. 

One of the trademarks of  the object-oriented approach is the ability to define 
classes that inherit the properties of other classes. Class A is a subclass [4] of class B 
if, for input sets IA and IB of classes A and B and 
output sets OA and OB of A and B, IB ⊆ IA and OB 

⊆  OA. So class A inherits the properties of class 
B and may have additional attributes of its own. 
Any changes made to B are passed along to A, 
increasing the overall flexibility and robustness 
of the network. This also leads to a natural 
hierarchy of object generalization and 
refinement. 

In figure 1, the object Interior is defined 
inside of the object Car, just as Car is defined 
inside of the larger OOBN. In fact, each object 
of an OOBN is defined inside of a unique encapsulating class [1]. Here the OOBN as 
a whole may be referred to as the situation object that contains all of the outermost 
objects in the network. This leads to another hierarchy of object encapsulation. An 
instance tree [4] may be used to represent all of these relationships. Here each object 
appears as the child of its encapsulating class. An instance tree for the OOBN in 
figure 1 appears in figure 2. Instance trees will be shown to be useful in the 
triangulation of the overall OOBN.   

3 Initial Compilation of an OOBN 

The first step of this algorithm involves creating an initial junction tree that may be 
updated as changes are made to the original network. The process of triangulating a 
Bayesian network and constructing a junction tree is known as compilation [2]. It 
begins with moralization of the OOBN. 

Suppose there exist two or more nodes in an OOBN that are parents of the same 
node. If the child node is a protected or output node, then all of its parents must 
belong to the same object. If the child node is an input node, then all of its parents 
must belong to the unique encapsulating object. In any case, parents sharing a child 
must belong to the same object and so moralization doesn’t involve the addition of 
any link that crosses from one object to another. Thus each object (including the 
outermost situation object) may be moralized independently of the others to maintain 
the structure of the overall OOBN [1].  

Since objects in the OOBN are d-separated from each other by their interfaces, 
each object in the OOBN may be triangulated separately, resulting in a junction tree. 
In this case,  fill-in edges may sometimes be created that cross from one object to 
another so some communication between objects is needed. Here instance trees play 
an important role [1]. 

 Situation 

 Car House Dog 

 Interior 

Figure 2. Instance tree for network 
depicting attributes of a person 
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First the leaves of the instance tree i.e., those objects in which no other object is 
defined, are triangulated. The only constraint here is that, in each of these objects, 
none of the interface nodes are eliminated. In each of these triangulations, as in any, a 
set of fill-in edges results. Fill-ins that appear between two interface nodes in an 
objects could effect the triangulation of the encapsulating object so they must be 
propagated upwards in the instance tree [6, 7]. All other fill-ins are considered 
protected and thus not propagated. 

This process is repeated recursively, traveling up the instance tree [6, 7]. In each 
object a triangulation is performed in which the interface nodes shared with 
encapsulating object are not eliminated. Note that interface nodes that are shared with 
the object’s children in the instance tree are eliminated here. Thus, through this 
process, every node in the OOBN will eventually be eliminated. This results in a valid 
triangulation in which no fill-in edge exists between two variables in different objects.  

4 Incremental Compilation of an OOBN 

Traditionally, when changes are made to an OOBN, the entire network is then 
recompiled to form a new junction tree. This process, particularly the triangulation 
step, is very computationally expensive. It is also largely inefficient, especially when 

the changes made to the 
network are small. In 
this case, most of the 
time is spent recreating 
the part of the junction 
tree that corresponds to 
the unchanged piece of 
the network. Through 
the method of in-
cremental compilation, 
this work can be 
avoided. Here only  he 
part of the network that 
has been changed - or 
whose junction tree may 
be effected by those 
changes - will be 
recompiled. The smaller 
junction tree for this 
network fragment will 
then be �merged� with 
the original junction tree 
over the entire network.  

The maximal prime sub-graph decomposition is the key to identifying and isolating 
those parts of the network that need to be recompiled. 
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Figure 3. (a) The Asia network. (b) moral graph. (c) triangulated graph. (d) 
junction tree. (e) Maximal Prime Subgraph Decomposition tree. (f) Maximal 
Prime Subgraph Decomposition 
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The maximal prime sub-graph decomposition 

The Maximal Prime Sub-graph Decomposition (MPSD) follows easily from the 
junction tree of a Bayesian network [2]. Given a network G, moralization must first 
be performed. Then the junction tree that corresponds to the optimal triangulation 
may be constructed.  The maximal prime sub-graphs (MPSs) of G may then be 
formed by combining cliques which include a fill-in edge from the triangulation. An 
MPSD tree has the MPSs of G as nodes. As in the junction tree, MPSs with nonempty 
intersections share edges which correspond to these intersections. 

 Figure 3 shows this process for the well known Asia network of [1, 2, 5]. 
The original network appears in part (a). Figure 3 (b) shows the moralized graph. The 
optimal triangulation and its corresponding junction tree are given in parts (c) and (d). 
Finally, figures 3 (e) and (f) present the MPSD tree and the corresponding MPSs.  

 

Incremental compilation using the MPSD 

 An overview of this process  is given in figure 4. Here G is the original 
Bayesian network and GM is its moral graph. GT is GM triangulated and T is the 
corresponding junction tree.  TMPD is the MPSD tree for G. At the start of the 

incremental compilation 
process, changes are made 
to G which result in a new 
network G� The goal is to 
construct T� and T�MPD. G� 
is first moralized to 
produce  G�M. Then, rather 
than continuing to build 
the trees for G�, the 
fragment gM of G�M which 
is the piece of G�M in 
which changes appear, is 
identified and isolated. 

Next, gM is triangulated to form gT and the corresponding junction tree t. Finally the 
smaller, updated trees gT and t are merged with the larger original trees T and TMPD. 
This creates trees T� and T�MPD, the desired results [2]. 

An example of this process appears in Figure 5. Here the link L →  E is removed 
from the Asia network.  In (a) we see the Asia network after the change and (b) shows 
the fragment of the graph that might be effected by the change.  Figure 5 (c) gives the 
junction tree for this fragment. The original junction tree for Asia and its update after 
aggregation with the tree in (c) appear in (d) and (e).   

                  

 G GM GT T TMPD 

gM gT  t  tMPD 

 G� G�M T� T�MPD 

Figure 4. Overview of the Incremental Compilation 
process using the MPSD 
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Figure 5. (a) Removal of link L →  E from the Asia network. (b) the effected graph fragment. (c) 
the resulting junction tree. (d) the original junction tree. (e) the final result. 
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In order to determine which part of the graph might be effected by some change, 

the set of nodes involved in the change is first constructed. In the Asia example of 
figure 5, those nodes are L and E. The MPSs that include those nodes are then 
collected and merged. This forms the graph fragment g of figure 4.  

The following changes may be made to an OOBN [1,2] : 
 

• Adding/removing a link: Here the root of the instance tree, i.e. the “outermost” 
object will have to be recompiled but, applying the procedure described earlier, 
only the relevant part of the graph will need to be processed. 

• Removing a node: This process involves removing each of the node’s links, as 
above, and then the trivial step of removing the disconnected node. 

• Adding a node: This is very simple as the new node initially has no links. No 
recompilation is required. 

• Adding/removing a reference link: This will cause a change to the interface 
between the encapsulating object and the instance of the input node. A 
recompilation of the encapsulating class will occur but, applying IC, only the 
relevant part of the graph will need to be processed. 

• Changing the class specification: The involves one or more of the above 
operations occurring within an object. Each change is handled as described 
earlier. 

5 Implementation of the Algorithm 

This project features an implementation of the incremental compilation algorithm 
for OOBNs. The major functions defined are as follows: 

 
• asia_test sets up the Asia network discussed earlier for the testing of the other 

functions 
• person_test creates an OOBN containing the attributes of a person. This network 

was first described in figure 1 and is given in complete detail in figure 6.  
• makeMPSD(junction tree, cliques, fillins) returns a collection of maximal 

prime sub-graphs and the corresponding MPSD tree 
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• markFragment(nodes, MPSs) takes the maximal prime sub-graphs and a 
collection of nodes and returns the fragment of the overall graph that may be 
effected by a change to the nodes 

• mergeJTrees(old tree, old cliques, new tree, new cliques) takes a larger 
junction tree and a smaller fragment and combines them, overwriting the old tree 
when necessary. This function is useful for finding the new junction tree as the 
last step of incremental compilation 

• OOBN_IC(OOBN) takes an OOBN and carries out the incremental compilation 
process as changes are made  

 Figure 6. OOBN containing attributes of a person  
 

Conclusion 

Object-oriented Bayesian networks have a structure that increases their flexibility 
and robustness. It also allows their use over larger and more complex domains. As 
these networks increase in scale, however, even small revisions begin to require 
extensive recompilation work. Much of this work is unnecessary, as it involves the 
recreation of the junction tree over the unchanged part of the graph. Incremental 
compilation makes it possible for only the part of the junction tree which is effected 
by the change to be updated. This leads to much more efficient inference in large 
networks.     
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