
Incremental Compilation of Object-Oriented Bayesian
Networks

Christina Merten

merten@cs.ubc.ca
Department of Computer Science, University of British Columbia,

2366 Main Mall, Vancouver, BC, V6T1Z4, Canada

Abstract. Object-oriented paradigms have been applied to Bayesian networks
to provide a modular structure which allows greater flexibility and robustness.
These object-oriented Bayesian networks may be used over larger and more
complex domains. However, as the networks get larger, the computational cost
of triangulation and junction tree construction grows. The process of creating
new junction trees when changes are made to object-oriented Bayesian
networks is particular inefficient. Bangso et al [1] describe a method for using
the networks maximal prime subgraph decomposition to only reconstruct the
parts of the junction trees effected by these changes. This project is an
implementation of that algorithm.

1 Introduction

Object-oriented paradigms have long been applied in the context of programming
languages to make code more coherent and aid its reuse. Object-oriented
programming languages [3] provide a modular structure that increases the robustness
and flexibility of programs. Thus, they are particularly well-suited to the design of
large-scale programs. Changes made in one class naturally propagate to all objects of
that class. Similarly, this approach may be applied to Bayesian networks to make
them more efficient and flexible, allowing their use over more complex domains.
Object-oriented networks have also proven to be particularly well-suited to highly
dynamic domains [3].

As these object-oriented Bayesian networks grow in size, the process of
constructing junction trees becomes more computationally expensive. This process
must be repeated whenever changes are made to the network. In a large network,
much of this work is redundant, especially when the changes made are small. In this
case, time is often wasted triangulating the unchanged part of the network.

An alternative approach, described by Bangso et al [1], involves using the maximal
prime subgraph decomposition to quickly identify and isolate the modified part of the
larger network. A junction tree may then be created for the smaller, changed fragment
to replace the appropriate piece in the existing junction tree. This eliminates the
unnecessary step of reprocessing the unchanged part of the network, building the
section of the new junction tree that is identical to the old part. This project is an
implementation of the more efficient algorithm.

2 Christina Merten

2 Object-Oriented Bayesian Networks

In an object-oriented Bayesian Network (OOBN), the basic unit is an object [1]. It
may be viewed as a set of set of properties that are associated with some entity in our
domain. An object has identity, state and behavior. It also belongs to a class, which is
a description of a set of objects with the same structure behavior and characteristics.

Specifically, an object X consists of three sets of nodes [4] :

• I(X) : These are input nodes that correspond to nodes which are not in the class

but which may be used as parents of nodes inside instances of the class. These
nodes may not have parents inside of the class.

• E(X): These are encapsulated nodes that can only have parents and children
inside of the class.

• O(X): These are the output nodes that can have children outside of the class.

An object may also be denoted by its full variable V+(X) = <E1, .., Em, O1, …, On> or
by its output variable V(X) = <O1,…,On>, where the E1,..,Em are the object’s
encapsulated nodes and the O1,…On are the object’s output nodes. An object’s
interface [1] consists of its input nodes and output nodes. Objects in an OOBN are d-
separated from each other by their interface nodes [4].

Figure 1 shows an example of an object-oriented Bayesian network depicting

attributes of a person. On the left, an overview of the network as a whole is shown.
The objects appearing in this network are House, Car, Interior and Dog. Object
Interior is defined inside of object Car in this example. On the right, a close-up image
of the object House appears. In object House, the input nodes are children and income
and the output nodes are sqr ft, # stories and yard size. The encapsulated nodes are #
bedrooms, # bathrooms, # closets, pool and fence.

age
job

 House
sqr ft # stories yard
 size

children
income

Dog
breed

 Car
 Interior
engine size

children

bedrooms

bath-
rooms

income

pool

fence

sqr ft

closets

stories yard size

Figure 1. An OOBN depicting attributes of a person appears on the left. On the
right a close-up image of the object House is shown.

Incremental Compilation of Object-Oriented Bayesian Networks 3

As mentioned earlier, while input nodes are part of the specification of an object,
they do not actually appear in the class to which the object belongs. Instead, they
correspond to nodes outside of the class. In an OOBN, the use of links from nodes
outside of an object to input nodes inside is analogous to “passing parameters” by
value to the object. These links are known as reference links [1] and they appear as
dotted lines in figure 1.

One of the trademarks of the object-oriented approach is the ability to define
classes that inherit the properties of other classes. Class A is a subclass [4] of class B
if, for input sets IA and IB of classes A and B and
output sets OA and OB of A and B, IB ⊆ IA and OB

⊆ OA. So class A inherits the properties of class
B and may have additional attributes of its own.
Any changes made to B are passed along to A,
increasing the overall flexibility and robustness
of the network. This also leads to a natural
hierarchy of object generalization and
refinement.

In figure 1, the object Interior is defined
inside of the object Car, just as Car is defined
inside of the larger OOBN. In fact, each object
of an OOBN is defined inside of a unique encapsulating class [1]. Here the OOBN as
a whole may be referred to as the situation object that contains all of the outermost
objects in the network. This leads to another hierarchy of object encapsulation. An
instance tree [4] may be used to represent all of these relationships. Here each object
appears as the child of its encapsulating class. An instance tree for the OOBN in
figure 1 appears in figure 2. Instance trees will be shown to be useful in the
triangulation of the overall OOBN.

3 Initial Compilation of an OOBN

The first step of this algorithm involves creating an initial junction tree that may be
updated as changes are made to the original network. The process of triangulating a
Bayesian network and constructing a junction tree is known as compilation [2]. It
begins with moralization of the OOBN.

Suppose there exist two or more nodes in an OOBN that are parents of the same
node. If the child node is a protected or output node, then all of its parents must
belong to the same object. If the child node is an input node, then all of its parents
must belong to the unique encapsulating object. In any case, parents sharing a child
must belong to the same object and so moralization doesn’t involve the addition of
any link that crosses from one object to another. Thus each object (including the
outermost situation object) may be moralized independently of the others to maintain
the structure of the overall OOBN [1].

Since objects in the OOBN are d-separated from each other by their interfaces,
each object in the OOBN may be triangulated separately, resulting in a junction tree.
In this case, fill-in edges may sometimes be created that cross from one object to
another so some communication between objects is needed. Here instance trees play
an important role [1].

 Situation

 Car House Dog

 Interior

Figure 2. Instance tree for network
depicting attributes of a person

4 Christina Merten

First the leaves of the instance tree i.e., those objects in which no other object is
defined, are triangulated. The only constraint here is that, in each of these objects,
none of the interface nodes are eliminated. In each of these triangulations, as in any, a
set of fill-in edges results. Fill-ins that appear between two interface nodes in an
objects could effect the triangulation of the encapsulating object so they must be
propagated upwards in the instance tree [6, 7]. All other fill-ins are considered
protected and thus not propagated.

This process is repeated recursively, traveling up the instance tree [6, 7]. In each
object a triangulation is performed in which the interface nodes shared with
encapsulating object are not eliminated. Note that interface nodes that are shared with
the object’s children in the instance tree are eliminated here. Thus, through this
process, every node in the OOBN will eventually be eliminated. This results in a valid
triangulation in which no fill-in edge exists between two variables in different objects.

4 Incremental Compilation of an OOBN

Traditionally, when changes are made to an OOBN, the entire network is then
recompiled to form a new junction tree. This process, particularly the triangulation
step, is very computationally expensive. It is also largely inefficient, especially when

the changes made to the
network are small. In
this case, most of the
time is spent recreating
the part of the junction
tree that corresponds to
the unchanged piece of
the network. Through
the method of in-
cremental compilation,
this work can be
avoided. Here only he
part of the network that
has been changed - or
whose junction tree may
be effected by those
changes - will be
recompiled. The smaller
junction tree for this
network fragment will
then be �merged� with
the original junction tree
over the entire network.

The maximal prime sub-graph decomposition is the key to identifying and isolating
those parts of the network that need to be recompiled.

 S

 T L B

 E

 X D

 A S

 T L B

 E

 X D

 A S

 T L B

 E

 X D

 A

 AT LBS

 LBE TLE

 EX DEB

 LB

 LE

 EB E

 T

 AT

LSBE TLE

 EX DEB

 LE

 EB E

 T
 T

 A T L

 E

 E

 X

 S

 L B

 E
 B

 E

 D

 (a) (b) (c)

(d) (f) (e)

Figure 3. (a) The Asia network. (b) moral graph. (c) triangulated graph. (d)
junction tree. (e) Maximal Prime Subgraph Decomposition tree. (f) Maximal
Prime Subgraph Decomposition

Incremental Compilation of Object-Oriented Bayesian Networks 5

The maximal prime sub-graph decomposition

The Maximal Prime Sub-graph Decomposition (MPSD) follows easily from the
junction tree of a Bayesian network [2]. Given a network G, moralization must first
be performed. Then the junction tree that corresponds to the optimal triangulation
may be constructed. The maximal prime sub-graphs (MPSs) of G may then be
formed by combining cliques which include a fill-in edge from the triangulation. An
MPSD tree has the MPSs of G as nodes. As in the junction tree, MPSs with nonempty
intersections share edges which correspond to these intersections.

 Figure 3 shows this process for the well known Asia network of [1, 2, 5].
The original network appears in part (a). Figure 3 (b) shows the moralized graph. The
optimal triangulation and its corresponding junction tree are given in parts (c) and (d).
Finally, figures 3 (e) and (f) present the MPSD tree and the corresponding MPSs.

Incremental compilation using the MPSD

 An overview of this process is given in figure 4. Here G is the original
Bayesian network and GM is its moral graph. GT is GM triangulated and T is the
corresponding junction tree. TMPD is the MPSD tree for G. At the start of the

incremental compilation
process, changes are made
to G which result in a new
network G� The goal is to
construct T� and T�MPD. G�
is first moralized to
produce G�M. Then, rather
than continuing to build
the trees for G�, the
fragment gM of G�M which
is the piece of G�M in
which changes appear, is
identified and isolated.

Next, gM is triangulated to form gT and the corresponding junction tree t. Finally the
smaller, updated trees gT and t are merged with the larger original trees T and TMPD.
This creates trees T� and T�MPD, the desired results [2].

An example of this process appears in Figure 5. Here the link L → E is removed
from the Asia network. In (a) we see the Asia network after the change and (b) shows
the fragment of the graph that might be effected by the change. Figure 5 (c) gives the
junction tree for this fragment. The original junction tree for Asia and its update after
aggregation with the tree in (c) appear in (d) and (e).

 G GM GT T TMPD

gM gT t tMPD

 G� G�M T� T�MPD

Figure 4. Overview of the Incremental Compilation
process using the MPSD

6 Christina Merten

 TE

 EB

 SL

 AT

 BS

 E

 B

 S

 AT

 EX

 E

 TE

 T

 (e) (d)

 E DEB

 BS

 LS

 B

 S

(a) (c) (b)

Figure 5. (a) Removal of link L → E from the Asia network. (b) the effected graph fragment. (c)
the resulting junction tree. (d) the original junction tree. (e) the final result.

 LBS

 LBETLE

 EX DEB

 LB

 LE

 EB E

 T

 S

 T L B

 E

 X D

 A S

 T L B

 E

In order to determine which part of the graph might be effected by some change,

the set of nodes involved in the change is first constructed. In the Asia example of
figure 5, those nodes are L and E. The MPSs that include those nodes are then
collected and merged. This forms the graph fragment g of figure 4.

The following changes may be made to an OOBN [1,2] :

• Adding/removing a link: Here the root of the instance tree, i.e. the “outermost”
object will have to be recompiled but, applying the procedure described earlier,
only the relevant part of the graph will need to be processed.

• Removing a node: This process involves removing each of the node’s links, as
above, and then the trivial step of removing the disconnected node.

• Adding a node: This is very simple as the new node initially has no links. No
recompilation is required.

• Adding/removing a reference link: This will cause a change to the interface
between the encapsulating object and the instance of the input node. A
recompilation of the encapsulating class will occur but, applying IC, only the
relevant part of the graph will need to be processed.

• Changing the class specification: The involves one or more of the above
operations occurring within an object. Each change is handled as described
earlier.

5 Implementation of the Algorithm

This project features an implementation of the incremental compilation algorithm
for OOBNs. The major functions defined are as follows:

• asia_test sets up the Asia network discussed earlier for the testing of the other

functions
• person_test creates an OOBN containing the attributes of a person. This network

was first described in figure 1 and is given in complete detail in figure 6.
• makeMPSD(junction tree, cliques, fillins) returns a collection of maximal

prime sub-graphs and the corresponding MPSD tree

Incremental Compilation of Object-Oriented Bayesian Networks 7

• markFragment(nodes, MPSs) takes the maximal prime sub-graphs and a
collection of nodes and returns the fragment of the overall graph that may be
effected by a change to the nodes

• mergeJTrees(old tree, old cliques, new tree, new cliques) takes a larger
junction tree and a smaller fragment and combines them, overwriting the old tree
when necessary. This function is useful for finding the new junction tree as the
last step of incremental compilation

• OOBN_IC(OOBN) takes an OOBN and carries out the incremental compilation
process as changes are made

 Figure 6. OOBN containing attributes of a person

Conclusion

Object-oriented Bayesian networks have a structure that increases their flexibility
and robustness. It also allows their use over larger and more complex domains. As
these networks increase in scale, however, even small revisions begin to require
extensive recompilation work. Much of this work is unnecessary, as it involves the
recreation of the junction tree over the unchanged part of the graph. Incremental
compilation makes it possible for only the part of the junction tree which is effected
by the change to be updated. This leads to much more efficient inference in large
networks.

8 Christina Merten

References

[1] O. Bangso, M. Flores, and F. Jensen. Plug and Play OOBNs. Technical report,
Department of computer Science, Aalborg University, Denmark, 2003.

 [2] M. Flores, J. Gamez, and K. Olesen. Incremental compilation of a Bayesian
Network. In Proceedings on the Nineteenth Conference on Uncertainty in
Artificial Intelligence. Pages 233-240. Morgan Kaufmann Publishers, San
Francisco, 2003.

[3] A. Goldberg and D. Robson. Smalltalk-80: The Language and its
Implementation. Addison-Wesley, 1983.

[4] D. Koller and A. Pfeffer. Object-Oriented Bayesian Networks. In Dan Geiger and
Prakash P. Shenoy, editors, Proceeding of the 13th Conference on Uncertainty in
Artificial Intelligence. Pages 302-313, San Francisco, 1997. Morgan Kaufmann
Publishers, San Francisco.

[5] K. Olesen and A. Madsen. Maximal prime sub-graph decomposition of Bayesian
Networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B. bf
32:1:21-31, 2002.

[6] Y. Xiang. Optimization of inter-subnet belief updating in multiply sectioned
Bayesian networks. In Proceedings on the Eleventh Conference on Uncertainty
in Artificial Intelligenc. Pages 680-687. Morgan Kaufmann Publishers, San
Francisco, 1995.

[7] Y.Xiang and F. Jensen. Inference in Multiply Sectioned Bayesian networks with
extended Shafer-Shenoy and lazy propagation. In Proceedings on the Fifteenth
Conference on Uncertainty in Artificial Intelligence. Pages 680-687. Morgan
Kaufmann Publishers, San Francisco, 1999.

